

Generative Adversarial Nets Introduction

Lantao Yu 2016 / 9 / 21

Success of Deep Learning

- Discriminative Models
 - backpropagation
 - dropout algorithms
 - Generative Models
 - Less of an impact
 - Intractable probabilistic computations
 - •

Two-player minimax game

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$

Train Generator

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

Train Discriminator

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

Optimal Discriminator

Proposition 1. For G fixed, the optimal discriminator D is

$$D_G^*(\boldsymbol{x}) = \frac{p_{data}(\boldsymbol{x})}{p_{data}(\boldsymbol{x}) + p_g(\boldsymbol{x})}$$

Reformulate the minimax game

$$C(G) = \max_{D} V(G, D)$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_{G}^{*}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} [\log (1 - D_{G}^{*}(G(\boldsymbol{z})))]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_{G}^{*}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} [\log (1 - D_{G}^{*}(\boldsymbol{x}))]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\boldsymbol{x})}{P_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} \left[\log \frac{p_{g}(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right]$$

$$= -\log(4) + KL\left(p_{\text{data}} \left\| \frac{p_{\text{data}} + p_g}{2} \right.\right) + KL\left(p_g \left\| \frac{p_{\text{data}} + p_g}{2} \right.\right)$$

Natural Image Generation

- CGAN
- LAPGAN
- DCGAN
- GRAN
- VAEGAN

•

Exposure bias in Sequence Generation

• In the inference stage, the model generates a sequence iteratively and predicts next token conditioned on its previously predicted ones that may be never observed in the training data.

Training

$$-\mathbb{E}_{\mathbf{x} \sim P} \log Q(x)$$

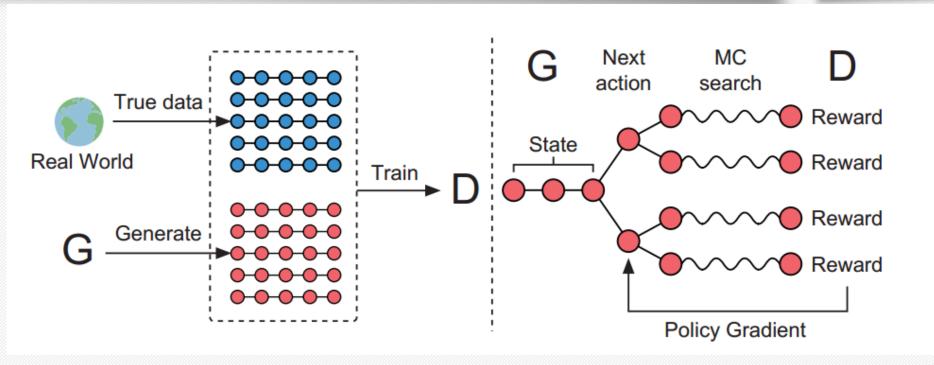
Inference

$$-\mathbb{E}_{\mathbf{x} \sim Q} \log P(x)$$

KL[P||Q] & KL[Q||P]

$$JSD[P||Q] = JSD[P||Q] = \frac{1}{2}KL\left[P\left\|\frac{P+Q}{2}\right] + \frac{1}{2}KL\left[Q\left\|\frac{P+Q}{2}\right]\right]$$

SeqGAN with Policy Gradient



Objective Function

$$J(\theta) = \mathbb{E}[R_T|s_0, \theta] = \sum_{y_1 \in \mathcal{Y}} G_{\theta}(y_1|s_0) \cdot Q_{D_{\phi}}^{G_{\theta}}(s_0, y_1)$$

$$Q^{G_{\theta}}(s = Y_{1:t-1}, a = y_t) = \mathcal{R}_s^a + \sum_{s' \in S} \delta_{ss'}^a V^{G_{\theta}}(s') = V^{G_{\theta}}(Y_{1:t})$$

$$V^{G_{\theta}}(s = Y_{1:t-1}) = \sum_{y_t \in \mathcal{Y}} G_{\theta}(y_t | Y_{1:t-1}) \cdot Q^{G_{\theta}}(Y_{1:t-1}, y_t)$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{Y_{1:t-1} \sim G_{\theta}} \left[\sum_{y_t \in \mathcal{Y}} \nabla_{\theta} G_{\theta}(y_t | Y_{1:t-1}) \cdot Q_{D_{\phi}}^{G_{\theta}}(Y_{1:t-1}, y_t) \right]$$

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} V^{G_{\theta}}(s_{0}) = \nabla_{\theta} \big[\sum_{y_{1} \in \mathcal{Y}} G_{\theta}(y_{1}|s_{0}) \cdot Q^{G_{\theta}}(s_{0}, y_{1}) \big] \\ &= \sum_{y_{1} \in \mathcal{Y}} \big[\nabla_{\theta} G_{\theta}(y_{1}|s_{0}) \cdot Q^{G_{\theta}}(s_{0}, y_{1}) + G_{\theta}(y_{1}|s_{0}) \cdot \nabla_{\theta} Q^{G_{\theta}}(s_{0}, y_{1}) \big] \\ &= \sum_{y_{1} \in \mathcal{Y}} \big[\nabla_{\theta} G_{\theta}(y_{1}|s_{0}) \cdot Q^{G_{\theta}}(s_{0}, y_{1}) + G_{\theta}(y_{1}|s_{0}) \cdot \nabla_{\theta} V^{G_{\theta}}(Y_{1:1}) \big] \\ &= \sum_{y_{1} \in \mathcal{Y}} \nabla_{\theta} G_{\theta}(y_{1}|s_{0}) \cdot Q^{G_{\theta}}(s_{0}, y_{1}) + \sum_{y_{1} \in \mathcal{Y}} G_{\theta}(y_{1}|s_{0}) \nabla_{\theta} \big[\sum_{y_{2} \in \mathcal{Y}} G_{\theta}(y_{2}|Y_{1:1}) Q^{G_{\theta}}(Y_{1:1}, y_{2}) \big] \\ &= \sum_{y_{1} \in \mathcal{Y}} \nabla_{\theta} G_{\theta}(y_{1}|s_{0}) \cdot Q^{G_{\theta}}(s_{0}, y_{1}) + \sum_{y_{1} \in \mathcal{Y}} G_{\theta}(y_{1}|s_{0}) \sum_{y_{2} \in \mathcal{Y}} \big[\nabla_{\theta} G_{\theta}(y_{2}|Y_{1:1}) \cdot Q^{G_{\theta}}(Y_{1:1}, y_{2}) \big] \\ &= \sum_{y_{1} \in \mathcal{Y}} \nabla_{\theta} G_{\theta}(y_{1}|s_{0}) \cdot Q^{G_{\theta}}(s_{0}, y_{1}) + \sum_{Y_{1:1}} P(Y_{1:1}|s_{0}; G_{\theta}) \sum_{y_{2} \in \mathcal{Y}} \nabla_{\theta} G_{\theta}(y_{2}|Y_{1:1}) \cdot Q^{G_{\theta}}(Y_{1:1}, y_{2}) \\ &+ \sum_{Y_{1:2}} P(Y_{1:2}|s_{0}; G_{\theta}) \nabla_{\theta} V^{G_{\theta}}(Y_{1:2}) \\ &= \sum_{Y_{1:2}} \sum_{Y_{1:2}} P(Y_{1:t-1}|s_{0}; G_{\theta}) \sum_{Y_{0} \in \mathcal{Y}} \nabla_{\theta} G_{\theta}(Y_{1:t-1}, y_{t}) \end{split}$$

$$= \mathbb{E}_{Y_{1:t-1} \sim G_{\theta}} \left[\sum_{y_t \in \mathcal{Y}} \nabla_{\theta} G_{\theta}(y_t | Y_{1:t-1}) \cdot Q^{G_{\theta}}(Y_{1:t-1}, y_t) \right],$$

 $t=1 Y_{1:t-1}$

Unbiased Estimation of the gradient

$$\nabla_{\theta} J(\theta) \simeq \frac{1}{T} \sum_{t=1}^{T} \sum_{y_{t} \in \mathcal{Y}} \nabla_{\theta} G_{\theta}(y_{t}|Y_{1:t-1}) \cdot Q_{D_{\phi}}^{G_{\theta}}(Y_{1:t-1}, y_{t})$$
(7)
$$= \frac{1}{T} \sum_{t=1}^{T} \sum_{y_{t} \in \mathcal{Y}} G_{\theta}(y_{t}|Y_{1:t-1}) \nabla_{\theta} \log G_{\theta}(y_{t}|Y_{1:t-1}) \cdot Q_{D_{\phi}}^{G_{\theta}}(Y_{1:t-1}, y_{t})$$

$$= \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{y_{t} \sim G_{\theta}(y_{t}|Y_{1:t-1})} [\nabla_{\theta} \log G_{\theta}(y_{t}|Y_{1:t-1}) \cdot Q_{D_{\phi}}^{G_{\theta}}(Y_{1:t-1}, y_{t})],$$

Action Value Approximation

$$Q_{D_{\phi}}^{G_{\theta}}(s = Y_{1:t-1}, a = y_{t}) =$$

$$\begin{cases} \frac{1}{N} \sum_{n=1}^{N} D_{\phi}(Y_{1:T}^{n}), \ Y_{1:T}^{n} \in MC^{G_{\beta}}(Y_{1:t}; N) & \text{for } t < T \\ D_{\phi}(Y_{1:t}) & \text{for } t = T, \end{cases}$$

where
$$Y_{1:t}^n = (y_1, \dots, y_t)$$

 $Y_{t+1:T}^n$ is sampled based on a roll-out policy and current state

Train Discriminator

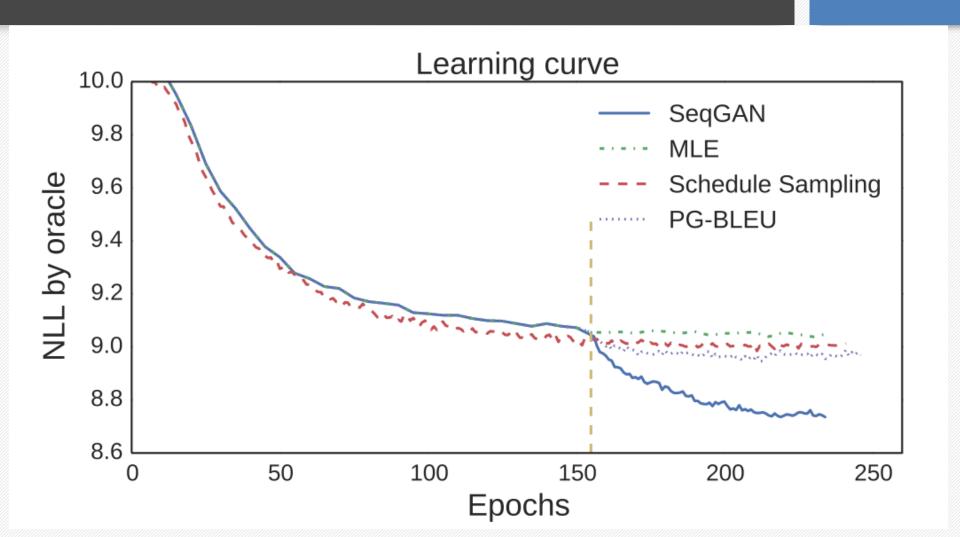
$$\min_{\phi} - \mathbb{E}_{Y \sim p_{\text{data}}}[\log D_{\phi}(Y)] - \mathbb{E}_{Y \sim G_{\theta}}[\log(1 - D_{\phi}(Y))].$$

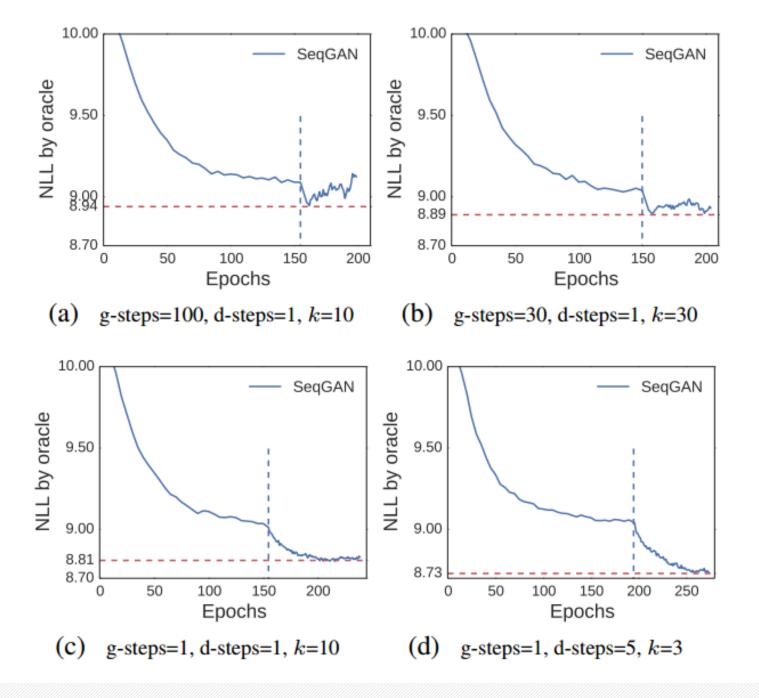
Synthetic data experiments

An oracle evaluation mechanism:

$$NLL_{oracle} = -\mathbb{E}_{Y_{1:T} \sim G_{\theta}} \left[\sum_{t=1}^{T} \log G_{oracle}(y_t | Y_{1:t-1}) \right]$$

Results





验室 NT LAB

Table 2: Chinese poem generation performance comparison.

Algorithm	Human score	<i>p</i> -value	BLEU-2	<i>p</i> -value
MLE	0.4165	0.0034	0.6670	$< 10^{-6}$
SeqGAN	0.5356	0.0034	0.7389	< 10
Real data	0.6011		0.746	

Table 3: Obama political speech generation performance.

Algorithm	BLEU-3	p-value	BLEU-4	<i>p</i> -value
MLE	0.519	$< 10^{-6}$	0.416	0.00014
SeqGAN	0.556	< 10	0.427	0.00014

Table 4: Music generation performance comparison.

Algorithm	BLEU-4	<i>p</i> -value	MSE	<i>p</i> -value
MLE	0.9210 0.9406	$< 10^{-6}$	22.38 20.62	0.00034
SeqGAN	0.5400		20.02	

Future work

- Value network
- Monte Carlo Tree Search
- Mini-batch discrimination

•

