Generative Adversarial Networks (GANs) for Discrete Data

Lantao Yu Shanghai Jiao Tong University http://lantaoyu.com July 26, 2017

Self Introduction – Lantao Yu

- Position
 - Research Assistant at CS Dept. of SJTU 2015-now
 - Apex Data and Knowledge Management Lab
 - Research on deep learning, reinforcement learning and multi-agent systems
- Education
 - Third-year Undergraduate Student, Computer Science Dept., Shanghai Jiao Tong University, China, 2014-now
- Contact
 - <u>lantaoyu@hotmail.com</u>
 - yulantao@apex.sjtu.edu.cn

Apex Data & Knowledge Management Lab

- Machine learning and data science
 - with applications of recommender systems, computational ads, social networks, crowdsourcing, urban computing etc.

Professor Yong Yu

A.P. Weinan Zhang

- Students
 - 8 PhDs
 - 8 Masters
 - 24 Undergrads
- www.apexlab.org

Content

- Fundamentals Generative Adversarial Networks
 - Connection and difference between generating discrete data and continuous data with GANs
- Advances GANs for Discrete Data
 - SeqGAN: Sequence Generation via GANs with Policy Gradient
 - IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models

Generative Adversarial Networks (GANs)

[Goodfellow, I., et al. 2014. Generative adversarial nets. In NIPS 2014.]

Problem Definition

- Given a dataset $D = \{x\}$, build a model q(x) of the data distribution that fits the true one p(x)
- Traditional objective: maximum likelihood estimation (MLE)

$$\max_{q} \frac{1}{|D|} \sum_{x \in D} \log q(x) \approx \max_{q} \mathbb{E}_{x \sim p(x)} [\log q(x)]$$

 Check whether a true data is with a high mass density of the learned model

Problems of MLE

• Inconsistency of Evaluation and Use

 $\max_{q} \mathbb{E}_{x \sim p(x)}[\log q(x)]$

Training/evaluation

- Check whether a true data is with a high mass density of the learned model
- Approximated by $\max_{q} \frac{1}{|D|} \sum_{x \in D} \log q(x)$

$$\max_{q} \mathbb{E}_{x \sim q(x)}[\log p(x)]$$
Use (Turing Test)

- Check whether a model-generated data is considered as true as possible
- More straightforward but it is hard or impossible to directly calculate p(x)

Problems of MLE

• Equivalent to minimizing asymmetric KL(p(x)||q(x)) :

$$KL(p(x)||q(x)) = \int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} dx$$

- When p(x) > 0 but $q(x) \to 0$, the integrand inside the KL grows quickly to infinity, which means MLE assigns an extremely high cost to such situation
- When $p(x) \to 0$ but q(x) > 0, the value inside the KL divergence goes to 0, which means MLE pays extremely low cost for generating fake looking samples

Problems of MLE

• *Exposure bias* in sequential data generation:

Training

Update the model as follows:

$$\max_{\theta} \mathbb{E}_{Y \sim p_{\text{true}}} \sum_{t} \log G_{\theta}(y_t | Y_{1:t-1})$$

$$The \text{ real prefix}$$

Inference

When generating the next token y_t , sample from:

$$G_{ heta}(\hat{y_t} | \hat{Y_{1:t-1}})$$

The **guessed** prefixed

Generative Adversarial Nets (GANs)

• What we really want

$$\max_{q} \mathbb{E}_{x \sim q(x)}[\log p(x)]$$

- But we cannot directly calculate p(x)
- Idea: what if we build a discriminator to judge whether a data instance is true or fake (artificially generated)?
 - Leverage the strong power of deep learning based discriminative models

Generative Adversarial Nets (GANs)

- Discriminator tries to correctly distinguish the true data and the fake model-generated data
- Generator tries to generate high-quality data to fool discriminator
- G & D can be implemented via neural networks
- Ideally, when D cannot distinguish the true and generated data, G nicely fits the true underlying data distribution

GANs: A Minimax Game

• The most general form:

Generating continuous data

- The generative model is a differentiable mapping from the prior noise space to data space
- First sample from a simple prior $z \sim p(z)$, then apply a deterministic function $G: \mathcal{Z} \to \mathcal{X}$
- No explicit Probability Density Function for data \boldsymbol{x}

GANs for continuous data

• The most general form:

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\log D(x)] + \mathbb{E}_{x \sim G(x)} [\log(1 - D(x))]$ $= \int_{x} p_{\text{data}}(x) \cdot \log(D(x)) + \overline{G(x)} \cdot \log(1 - D(x)) dx$

Probability Density Function

• Without explicit P.D.F., we can rewrite the minimax game as:

 $\min_{G} \max_{D} V(D,G)$

$$= \mathbb{E}_{x \sim p_{\text{data}}(x)} [\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [\log(1 - D(G(z)))]$$
$$= \int_x p_{\text{data}}(x) \cdot \log(D(x)) dx + \int_z p_z(z) \cdot \log(1 - D(G(z))) dx$$

Directly optimize the differentiable mapping!

GANs for continuous data

• In order to take gradient on the generator parameter, *x* has to be continuous $J^{(D)} = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [\log(1 - D(G(z)))]$ Generator min max J^(D) Discriminator max J^(D)

GANs for continuous data

Ideal Final Equilibrium

- Generator generates perfect data distribution
- Discriminator cannot distinguish the true and generated data

Training GANs

for number of training iterations do

Training discriminator

for k steps ${\bf do}$

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

Training GANs

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

Training generator

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

Optimal Strategy for Discriminator

Reformulate the Minimax Game

$$J^{(D)} = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [\log(1 - D(G(z)))]$$

$$= \mathbb{E}_{x \sim p_{\text{data}}(x)} [\log D(x)] + \mathbb{E}_{x \sim p_G(x)} [\log(1 - D(x))]$$

$$= \mathbb{E}_{x \sim p_{\text{data}}(x)} \log \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)}$$

$$+ \mathbb{E}_{x \sim p_G(x)} \log \frac{p_G(x)}{p_{\text{data}}(x) + p_G(x)}$$

$$= \log(4) + KL(p_{\text{data}}||\frac{p_{\text{data}} + p_G}{2}) + KL(p_G||\frac{p_{\text{data}} + p_G}{2})$$

 $\min_{G} J^{(D)} \text{ is something between } \min_{G} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}}[p_{G}(\boldsymbol{x})] \text{ and } \min_{G} \mathbb{E}_{\boldsymbol{x} \sim p_{G}}[p_{\text{data}}(\boldsymbol{x})]$

[Huszár, Ferenc. "How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?." arXiv (2015).]

Generating discrete data

- The generative model computes a probability distribution over the candidate choices
- First computes the Probability Density Function of data x (e.g. softmax over the vocabulary), then sample from it.

GANs for discrete data

• With explicit P.D.F. we can simply start with the most general form of the minimax game:

$$\min_{G} \max_{D} V(D,G)$$

$$= \mathbb{E}_{x \sim p_{\text{data}}(x)} [\log D(x)] + \mathbb{E}_{x \sim G(x)} [\log(1 - D(x))]$$

=
$$\int_{x} p_{\text{data}}(x) \cdot \log(D(x)) + \overline{G(x)} \cdot \log(1 - D(x)) dx$$

Probability Density Function

- Now, instead of optimizing a transformation, we can directly optimize the P.D.F. with the guidance of the discriminator.
- Note that even for discrete data, G(x) is differentiable!

GANs for Discrete Data

- We could direct build a parametric distribution for discrete data
 - For example of the discrete data

 $\{A_1; A_2; A_3; A_4; A_5\}$

• The data P.D.F. could be defined as

$$p(A_i) = \frac{e^{f(A_i)}}{\sum_j e^{f(A_j)}}$$

A_i Probability

where the scoring function could be defined based on domain knowledge, e.g., a neural network with A_i embedding as the input

Borrow the Idea from RL

- For a generator $G(A_i) = P(A_i; \theta^{(G)})$
- Intuition
 - lower the probability of the choice that leads to low value/reward
 - higher the probability of the choice that leads to high value/reward
- The one-field 5-category example

Advances: GANs for Discrete Data

- Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. AAAI 2017.
- Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng Zhang and Dell Zhang. IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models. SIGIR 2017.

SeqGAN: Sequence Generation via GANs with Policy Gradient

[Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. AAAI 2017.]

Problem for Discrete Data

• On continuous data, there is direct gradient

$$\nabla_{\theta^{(G)}} \frac{1}{|m|} \sum_{i=1}^{m} \log(1 - D(G(z^{(i)})))$$

- Guide the generator to (slightly) modify the output
- No direct gradient on discrete data
 - Text generation example
 - "床前明月光"
 - "I caught a penguin in the park"
 - From Ian Goodfellow: "If you output the word 'penguin', you can't change that to "penguin + .001" on the next step, because there is no such word as "penguin + .001". You have to go all the way from "penguin" to "ostrich"."

[https://www.reddit.com/r/MachineLearning/comments/40ldq6/generative_adversarial_networks_for_text/]

- Generator is a reinforcement learning policy $G(y_t|Y_{1:t-1})$ of generating a sequence
 - decide the next word to generate given the previous ones
- Discriminator provides the reward (i.e. the probability of being true data) $D(Y_{1:T}^n)$ for the whole sequence

Sequence Generator

Objective: to maximize the expected reward

$$J(\theta) = \mathbb{E}[R_T|s_0, \theta] = \sum_{y_1 \in \mathcal{Y}} G_\theta(y_1|s_0) \cdot Q_{D_\phi}^{G_\theta}(s_0, y_1)$$

- State-action value function $Q_{D_\phi}^{G_\theta}(s,a)$ is the expected accumulative reward that
 - Start from state s
 - Taking action *a*
 - And following policy G until the end
- Reward is only on completed sequence (no immediate reward)

 $Q_{D_{\phi}}^{G_{\theta}}(s = Y_{1:T-1}, a = y_T) = D_{\phi}(Y_{1:T})$

State-Action Value Setting

- Reward is only on completed sequence
 - No immediate reward
 - Then the last-step state-action value $Q_{D_{\phi}}^{G_{\theta}}(s=Y_{1:T-1},a=y_{T})=D_{\phi}(Y_{1:T})$
- For intermediate state-action value
 - Use Monte Carlo search to estimate $\{Y_{1:T}^1, \dots, Y_{1:T}^N\} = MC^{G_\beta}(Y_{1:t}; N)$

$$\begin{aligned} Q_{D_{\phi}}^{G_{\theta}}(s = Y_{1:t-1}, a = y_t) = & & & & \\ \begin{cases} \frac{1}{N} \sum_{n=1}^{N} D_{\phi}(Y_{1:T}^n), \ Y_{1:T}^n \in \mathrm{MC}^{G_{\beta}}(Y_{1:t}; N) & & & \text{for } t < T \\ D_{\phi}(Y_{1:t}) & & & & & & \\ \end{cases} \end{aligned}$$

Next

action

G

State

MC

Reward

Reward

Reward

Training Sequence Generator

Policy gradient (REINFORCE)

$$\begin{split} \nabla_{\theta} J(\theta) &= \sum_{t=1}^{T} \mathbb{E}_{Y_{1:t-1} \sim G_{\theta}} [\sum_{y_t \in \mathcal{Y}} \nabla_{\theta} G_{\theta}(y_t | Y_{1:t-1}) \cdot Q_{D_{\phi}}^{G_{\theta}}(Y_{1:t-1}, y_t)] \\ &\simeq \sum_{t=1}^{T} \sum_{y_t \in \mathcal{Y}} \nabla_{\theta} G_{\theta}(y_t | Y_{1:t-1}) \cdot Q_{D_{\phi}}^{G_{\theta}}(Y_{1:t-1}, y_t) \\ &= \sum_{t=1}^{T} \sum_{y_t \in \mathcal{Y}} G_{\theta}(y_t | Y_{1:t-1}) \nabla_{\theta} \log G_{\theta}(y_t | Y_{1:t-1}) \cdot Q_{D_{\phi}}^{G_{\theta}}(Y_{1:t-1}, y_t) \\ &= \sum_{t=1}^{T} \mathbb{E}_{y_t \sim G_{\theta}(y_t | Y_{1:t-1})} [\nabla_{\theta} \log G_{\theta}(y_t | Y_{1:t-1}) \cdot Q_{D_{\phi}}^{G_{\theta}}(Y_{1:t-1}, y_t)], \\ &\qquad \theta \leftarrow \theta + \alpha_h \nabla_{\theta} J(\theta) \end{split}$$

[Richard Sutton et al. Policy Gradient Methods for Reinforcement Learning with Function Approximation. NIPS 1999.]

Training Sequence Discriminator

Objective: standard bi-classification

 $\min_{\phi} - \mathbb{E}_{Y \sim p_{\text{data}}} [\log D_{\phi}(Y)] - \mathbb{E}_{Y \sim G_{\theta}} [\log(1 - D_{\phi}(Y))]$

Overall Algorithm

Algorithm 1 Sequence Generative Adversarial Nets

Require: generator policy G_{θ} ; roll-out policy G_{β} ; discriminator D_{ϕ} ; a sequence dataset $S = \{X_{1:T}\}$

- 1: Initialize G_{θ} , D_{ϕ} with random weights θ , ϕ .
- 2: Pre-train G_{θ} using MLE on S

3: $\beta \leftarrow \theta$

- 4: Generate negative samples using G_{θ} for training D_{ϕ}
- 5: Pre-train D_{ϕ} via minimizing the cross entropy

6: repeat

- 7: **for** g-steps **do**
- 8: Generate a sequence $Y_{1:T} = (y_1, \ldots, y_T) \sim G_{\theta}$

```
9: for t in 1 : T do
```

```
10: Compute Q(a = y_t; s = Y_{1:t-1}) by Eq. (4)
```

```
11: end for
```

- 12: Update generator parameters via policy gradient Eq. (8)
- 13: **end for**
- 14: **for** d-steps **do**
- 15: Use current G_{θ} to generate negative examples and combine with given positive examples S
- 16: Train discriminator D_{ϕ} for k epochs by Eq. (5)
- 17: **end for**

```
18: \beta \leftarrow \theta
```

19: until SeqGAN converges

Sequence Generator Model

• RNN with LSTM cells

[Hochreiter, S., and Schmidhuber, J. 1997. Long short-term memory. Neural computation 9(8):1735–1780.]

Sequence Discriminator Model

[Kim, Y. 2014. Convolutional neural networks for sentence classification. EMNLP 2014.]

Experiments on Synthetic Data

• Evaluation measure with Oracle

$$\mathrm{NLL}_{\mathrm{oracle}} = -\mathbb{E}_{Y_{1:T}\sim G_{\theta}} \left[\sum_{t=1}^{T} \log G_{\mathrm{oracle}}(y_t | Y_{1:t-1}) \right]$$

- An oracle model (e.g. the randomly initialized LSTM)
 - Firstly, the oracle model produces some sequences as training data for the generative model
 - Secondly the oracle model can be considered as the human observer to accurately evaluate the perceptual quality of the generative model

Experiments on Synthetic Data

• Evaluation measure with Oracle

$$NLL_{oracle} = -\mathbb{E}_{Y_{1:T} \sim G_{\theta}} \left[\sum_{t=1}^{I} \log G_{oracle}(y_t | Y_{1:t-1}) \right]$$

Algorithm | Random | MLE | SS | PG-BLEU | SeqGAN

ingonum	Rundom		55	I O DELO	bequint
NLL	10.310	9.038	8.985	8.946	8.736
<i>p</i> -value	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$	

Experiments on Real-World Data

Chinese poem generation

Algorithm	Human score	<i>p</i> -value	BLEU-2	<i>p</i> -value
MLE	0.4165	0.0034	0.6670	$< 10^{-6}$
SeqGAN	0.5356	0.0034	0.7389	< 10
Real data	0.6011		0.746	

• Obama political speech text generation

Algorithm	BLEU-3	<i>p</i> -value	BLEU-4	<i>p</i> -value
MLE	0.519	$< 10^{-6}$	0.416	0.00014
SeqGAN	0.556	< 10	0.427	0.00014

• Midi music generation

Algorithm	BLEU-4	<i>p</i> -value	MSE	<i>p</i> -value
MLE	0.9210	$< 10^{-6}$	22.38	0.00034
SeqGAN	0.9406	$\langle 10$	20.62	0.00034

Experiments on Real-World Data

• Chinese poem generation

Can you distinguish which part is from human or machine?

Experiments on Real-World Data

• Chinese poem generation

Human

Machine

Obama Speech Text Generation

- When he was told of this extraordinary honor that he was the most trusted man in America
- But we also remember and celebrate the journalism that Walter practiced -- a standard of honesty and integrity and responsibility to which so many of you have committed your careers. It's a standard that's a little bit harder to find today
- I am honored to be here to pay tribute to the life and times of the man who chronicled our time.

- i stood here today i have one and most important thing that not on violence throughout the horizon is OTHERS american fire and OTHERS but we need you are a strong source
- for this business leadership will remember now i cant afford to start with just the way our european support for the right thing to protect those american story from the world and
- i want to acknowledge you were going to be an outstanding job times for student medical education and warm the republicans who like my times if he said is that brought the

Machine

Human

IRGAN: A Minimax Game for Information Retrieval

Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng Zhang and Dell Zhang. IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models. SIGIR 2017.

Two schools of thinking in IR modeling

Generative Retrieval

- Assume there is an underlying stochastic generative process between documents and queries
- Generate/Select relevant documents given a query

Discriminative Retrieval

- Learns from labeled relevant judgments
- Predict the relevance given a querydocument pair

Three paradigms in Learning to Rank (LTR)

- **Pointwise:** learn to approximate the relevance estimation of each document to the human rating
- **Pairwise:** distinguish the more-relevant document from a document pair
- Listwise: learn to optimise the (smoothed) loss function defined over the whole ranking list for each query

IRGAN: A minimax game unifying both models

- Take advantage of both schools of thinking:
 - The generative model learns to fit the relevance distribution over documents via the signal from the discriminative model.
 - The discriminative model is able to exploit the unlabeled data selected by the generative model to achieve a better estimation for document ranking.

- The underlying true relevance distribution $p_{true}(d|q,r)$ depicts the user's relevance preference distribution over the candidate documents with respect to his submitted query
- Training set: A set of samples from $p_{\text{true}}(d|q,r)$
- Generative retrieval model $p_{\theta}(d|q,r)$
 - Goal: approximate the true relevance distribution
- Discriminative retrieval model $f_{\phi}(q,d)$
 - Goal: distinguish between relevant documents and nonrelevant documents

• Overall Objective

Where
$$D(d|q) = \sigma(f_{\phi}(d,q)) = \frac{\exp(f_{\phi}(d,q))}{1 + \exp(f_{\phi}(d,q))}$$

• Optimizing Discriminative Retrieval

λT

$$\phi^* = \arg\max_{\phi} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{\text{true}}(d|q_n,r)} \left[\log(\sigma(f_{\phi}(d,q_n))) \right] + \mathbb{E}_{d \sim p_{\theta^*}(d|q_n,r)} \left[\log(1 - \sigma(f_{\phi}(d,q_n))) \right] \right)$$

- Optimizing Generative Retrieval
 - Samples documents from the whole document set to fool its opponent

$$\theta^* = \arg\min_{\theta} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{\text{true}}(d|q_n, r)} \left[\log \sigma(f_{\phi}(d, q_n)) \right] + \\ \mathbb{E}_{d \sim p_{\theta}(d|q_n, r)} \left[\log(1 - \sigma(f_{\phi}(d, q_n))) \right] \right)$$
$$= \arg\max_{\theta} \sum_{n=1}^{N} \underbrace{\mathbb{E}_{d \sim p_{\theta}(d|q_n, r)} \left[\log(1 + \exp(f_{\phi}(d, q_n))) \right]}_{\text{denoted as } J^G(q_n)} \text{Reward Term}$$

• REINFORCE (Advantage Function)

Algorithm

Algorithm 1 Minimax Game for IR (a.k.a IRGAN)

- **Input:** generator $p_{\theta}(d|q, r)$; discriminator $f_{\phi}(\boldsymbol{x}_{i}^{q})$; training dataset $S = \{\boldsymbol{x}\}$
 - 1: Initialise $p_{\theta}(d|q, r), f_{\phi}(q, d)$ with random weights θ, ϕ .
 - 2: Pre-train $p_{\theta}(d|q, r), f_{\phi}(q, d)$ using S
 - 3: repeat
 - 4: **for** g-steps **do**
 - 5: $p_{\theta}(d|q, r)$ generates *K* documents for each query *q*
 - 6: Update generator parameters via policy gradient Eq. (5)
 - 7: end for
 - 8: for d-steps do
 - 9: Use current $p_{\theta}(d|q, r)$ to generate negative examples and combine with given positive examples S
- 10: Train discriminator $f_{\phi}(q, d)$ by Eq. (3)
- 11: **end for**
- 12: until IRGAN converges

- Extension to Pairwise Case
 - It is common that the dataset is a set of ordered document pairs for each query rather than a set of relevant documents.
 - Capture relative preference judgements rather than absolute relevance judgements
- Now, for each query q_n , we have a set of labelled document pairs $R_n = \{\langle d_i, d_j \rangle | d_i \succ d_j \}$

- Extension to Pairwise Case
 - Discriminator would try to predict if a document pair is correctly ranked, which can be implemented as many pairwise ranking loss function:
 - RankNet: $\log(1 + \exp(-z))$
 - Ranking SVM (Hinge Loss): $(1-z)_+$
 - RankBoost: $\exp(-z)$

where $z = f_{\phi}(d_u, q) - f_{\phi}(d_v, q)$

- Extension to Pairwise Case
 - Generator would try to generate document pairs that are similar to those in R_n , i.e., with the correct ranking.
 - A softmax function over the Cartesian Product of the document sets, where the logits is the advantage of d_i over d_j in a document pair (d_i, d_j)

An Intuitive Explanation of IRGAN

Observed positive samples
 Unobserved positive samples
 Unobserved negative samples
 Generated unobserved samples
 ↓
 Upward force from REINFORCE
 ↓
 Downward force from knocker
 The underlying correlation between positive samples

Figure 1: An illustration of IRGAN training.

An Intuitive Explanation of IRGAN

- The generative retrieval model is guided by the signal provided from the discriminative retrieval model, which makes it more favorable than the non-learning methods or the Maximum Likelihood Estimation (MLE) scheme.
- The discriminative retrieval model could be enhanced to better rank top documents via a strategic negative sampling from the generator.

Experiments: Web Search

Table 1: Webpage ranking performance comparison on MQ2008-semi dataset, where * means significant improvement in a Wilcoxon signed-rank test.

	P@3	P@5	P@10	MAP
MLE	0.1556	0.1295	0.1029	0.1604
RankNet [3]	0.1619	0.1219	0.1010	0.1517
LambdaRank [5]	0.1651	0.1352	0.1076	0.1658
LambdaMART [4]	0.1368	0.1026	0.0846	0.1288
IRGAN-pointwise	0.1714	0.1657	0.1257	0.1915
IRGAN-pairwise	0.2000	0.1676	0.1248	0.1816
Impv-pointwise	3.82%	22.56%*	$16.82\%^*$	$15.50\%^{*}$
Impv-pairwise	$21.14\%^*$	$23.96\%^{*}$	15.98%	9.53%
	NDCG@3	NDCG@5	NDCG@10	MRR
MLE	NDCG@3 0.1893	NDCG@5 0.1854	NDCG@10 0.2054	MRR 0.3194
MLE RankNet [3]	NDCG@3 0.1893 0.1801	NDCG@5 0.1854 0.1709	NDCG@10 0.2054 0.1943	MRR 0.3194 0.3062
MLE RankNet [3] LambdaRank [5]	NDCG@3 0.1893 0.1801 0.1926	NDCG@5 0.1854 0.1709 0.1920	NDCG@10 0.2054 0.1943 0.2093	MRR 0.3194 0.3062 0.3242
MLE RankNet [3] LambdaRank [5] LambdaMART [4]	NDCG@3 0.1893 0.1801 0.1926 0.1573	NDCG@5 0.1854 0.1709 0.1920 0.1456	NDCG@10 0.2054 0.1943 0.2093 0.1627	MRR 0.3194 0.3062 0.3242 0.2696
MLE RankNet [3] LambdaRank [5] LambdaMART [4] IRGAN-pointwise	NDCG@3 0.1893 0.1801 0.1926 0.1573 0.2065	NDCG@5 0.1854 0.1709 0.1920 0.1456 0.2225	NDCG@10 0.2054 0.1943 0.2093 0.1627 0.2483	MRR 0.3194 0.3062 0.3242 0.2696 0.3508
MLE RankNet [3] LambdaRank [5] LambdaMART [4] IRGAN-pointwise IRGAN-pairwise	NDCG@3 0.1893 0.1801 0.1926 0.1573 0.2065 0.2148	NDCG@5 0.1854 0.1709 0.1920 0.1456 0.2225 0.2154	NDCG@10 0.2054 0.1943 0.2093 0.1627 0.2483 0.2380	MRR 0.3194 0.3062 0.3242 0.2696 0.3508 0.3322
MLE RankNet [3] LambdaRank [5] LambdaMART [4] IRGAN-pointwise IRGAN-pairwise Impv-pointwise	NDCG@3 0.1893 0.1801 0.1926 0.1573 0.2065 0.2148 7.22%	NDCG@5 0.1854 0.1709 0.1920 0.1456 0.2225 0.2154 15.89%	NDCG@10 0.2054 0.1943 0.2093 0.1627 0.2483 0.2380 18.63%	MRR 0.3194 0.3062 0.3242 0.2696 0.3508 0.3322 8.20%

Experiments: Web Search

Figure 2: Learning curves of the pointwise IRGAN on web search task.

Figure 3: Learning curves of the pairwise IRGAN on web search task.

Experiments: Item Recommendation

	P@3	P@5	P@10	MAP
MLE	0.3369	0.3013	0.2559	0.2005
BPR [35]	0.3289	0.3044	0.2656	0.2009
LambdaFM [45]	0.3845	0.3474	0.2967	0.2222
IRGAN-pointwise	0.4072	0.3750	0.3140	0.2418
Impv-pointwise	5.90%*	7.94%*	5.83%*	<mark>8.82</mark> %*
	NDCG@3	NDCG@5	NDCG@10	MRR
MLE	0.3461	0.3236	0.3017	0.5264
BPR [35]	0.3410	0.3245	0.3076	0.5290
LambdaFM [45]	0.3986	0.3749	0.3518	0.5797
IRGAN-pointwise	0.4222	0.4009	0.3723	0.6082
Impv-pointwise	5.92%*	6.94%*	5.83%*	4.92%*

 Table 3: Item recommendation results (Movielens).

Table 4: Item recommendation results (Netflix).

	P@3	P@5	P@10	MAP
MLE	0.2941	0.2945	0.2777	0.0957
BPR [35]	0.3040	0.2933	0.2774	0.0935
LambdaFM [45]	0.3901	0.3790	0.3489	0.1672
IRGAN-pointwise	0.4456	0.4335	0.3923	0.1720
Impv-pointwise	14.23%*	14.38%*	$12.44\%^{*}$	2.87%*
	NDCG@3	NDCG@5	NDCG@10	MRR
MLE	NDCG@3	NDCG@5	NDCG@10 0.2878	MRR 0.5085
MLE BPR [35]	NDCG@3 0.3032 0.3077	NDCG@5 0.3011 0.2993	NDCG@10 0.2878 0.2866	MRR 0.5085 0.5040
MLE BPR [35] LambdaFM [45]	NDCG@3 0.3032 0.3077 0.3942	NDCG@5 0.3011 0.2993 0.3854	NDCG@10 0.2878 0.2866 0.3624	MRR 0.5085 0.5040 0.5857
MLE BPR [35] LambdaFM [45] IRGAN-pointwise	NDCG@3 0.3032 0.3077 0.3942 0.4498	NDCG@5 0.3011 0.2993 0.3854 0.4404	NDCG@10 0.2878 0.2866 0.3624 0.4097	MRR 0.5085 0.5040 0.5857 0.6371

Experiments: Item Recommendation

Figure 6: Learning curve of precision and NDCG of the generative retrieval model for top-5 item recommendation task on Movielens dataset.

Experiments: Question Answering

	test-1	test-2
QA-CNN [9] LambdaCNN [9, 49] IRGAN-pairwise	0.6133 0.6183 0.6383	0.5689 0.5838 0.5978
Impv-pairwise	3.23%*	2.74%

Table 5: The Precision@1 of InsuranceQA.

Figure 8: The experimental results in QA task.

Summary of IRGAN

- We proposed IRGAN framework that unifies two schools of information retrieval methodologies, via adversarial training in a minimax game, which takes advantage of both schools of thinking.
- Significant performance gains were observed in three typical information retrieval tasks.
- Experiments suggest that different equilibria could be reached in the end depending on the tasks and settings.

Summary of This Talk

- Generative Adversarial Networks (GANs) are so popular in deep unsupervised learning research
- GANs provide a new training framework closer to the target use of the generative model

 $\max \mathbb{E}_{x \sim p(x)}[\log q(x)] \qquad \max \mathbb{E}_{x \sim q(x)}[\log p(x)]$ Training/evaluation Use (Turing Test)

• For discrete data generation, one could directly define the parametric distribution and optimize the P.D.F. by policy gradient methods, e.g. REINFORCE

Thank You

Lantao Yu Shanghai Jiao Tong University http://lantaoyu.com

- Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. AAAI 2017.
- Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng Zhang and Dell Zhang. IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models. SIGIR 2017.