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Abstract In this work, we study the spectrum of the normalized Laplacian and its
regularized version for random geometric graphs (RGGs) in different scaling regimes.
We consider n nodes distributed uniformly and independently on the d-dimensional
torus Td ≡ [0, 1]d and form an RGG by connecting two nodes when their `p-distance,
1 ≤ p ≤ ∞, does not exceed a certain threshold rn. Two scaling regimes for rn are of
special interest. One of these is the connectivity regime, in which the average vertex
degree grows logarithmically in n. The second scaling regime is the thermodynamic
regime, in which the average vertex degree is a constant. When d is fixed and n→∞,
we prove that the limiting eigenvalue distribution (LED) of the normalized Laplacian
matrix of RGGs converges to the Dirac distribution at one in the full range of the
connectivity regime. In the thermodynamic regime, we propose an approximation for
the LED and we provide a bound on the Levy distance between this approximation
and the actual distribution. In particular, we show that the LED of the regularized
normalized Laplacian matrix of an RGG can be approximated by the LED of the
regularized normalized Laplacian of a deterministic geometric graph with nodes in a
grid (DGG).
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1 Introduction

The spectra of random matrices and random graphs have been extensively studied in
the literature [1–5]. Spectral graph methods have become a fundamental tool in the
analysis of large complex networks, and related disciplines, with a broad range of
applications in telecommunication, machine learning, data mining, and web search.
The first natural random graph model of complex networks is an Erdös-Rényi (ER)
random graph [6] where edges between nodes appear with equal probabilities. This
model has many appealing analytical properties but does not model important fea-
tures of many real complex networks. In particular, the ER graph fails in describing
clustering properties of graphs in which the geographical distance is a critical factor,
as for example wireless ad-hoc network [7], sensor network [8], and the study of the
dynamics of a viral spreading in a specific network of interactions [9], [10]. To prop-
erly model such networks, we consider a special class of graphs known as random
geometric graphs (RGGs) [11]. Another very important motivation for the study of
RGGs is their applications to statistics and learning. Many clustering techniques such
as the nearest-neighbor technique in statistics and machine learning are based on the
spatial structure of RGGs [12], [13].

Let us precisely define the RGG studied in this work. We consider a finite set Xn
of n nodes, x1, ..., xn, distributed uniformly and independently on the d-dimensional
torus Td ≡ [0, 1]d. Taking a torus Td instead of a cube allows us not to consider
boundary effects. Given a geographical distance rn > 0, we form a graph by con-
necting two nodes xi, xj ∈ Xn if the `p-distance between them is at most rn, i.e.,
‖xi− xj‖p ≤ rn with p ∈ [1,∞] (that is, either p ∈ [1,∞) or p =∞), see Fig. 1(a).
Here ‖.‖p is the `p-metric on Rd defined as

‖xi − xj‖p =


(∑d

k=1 | x
(k)
i − x

(k)
j |p

)1/p
for p ∈ [1,∞),

max{| x(k)i − x
(k)
j |, 1 ≤ k ≤ d} for p =∞,

where the case p = 2 gives the standard Euclidean metric on Rd. When p = ∞,
the maximum distance between two nodes is called the Chebyshev distance. Such
graphs, denoted by G(Xn, rn), are called RGGs and are extensively discussed in
[11]. Typically, the function rn is chosen such that rn → 0 when n→∞. Unlike ER
graphs, the RGG is an inherently harder model to work with since the nature of the
graph induces dependencies between edges.

The degree of a vertex inG(Xn, rn) is the number of edges incident to it. Let θ(d)

denote the volume of the d-dimensional unit hypersphere in Td. Then, the average
vertex degree in G(Xn, rn) is equal to an = θ(d)nrdn [11]. Often, RGGs present
different properties depending on the average vertex degree an. Two different scaling
regimes for an are of particular interest in this work. The first one is the connectivity
regime, in which the average vertex degree an grows logarithmically in n or faster,
i.e., Ω(log(n))1 [11]. In real-world applications, networks may consist of several
disconnected components, e.g., social interaction networks [14] and web graphs [15].

1 The notation f(n) = Ω(g(n)) indicates that f(n) is bounded below by g(n) asymptotically, i.e.,
∃K > 0 and no ∈ N such that ∀n > n0 f(n) ≥ Kg(n).
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In this case, the network structure falls in the thermodynamic regime. Therefore, the
second scaling regime of interest is the thermodynamic regime, in which the average
vertex degree is a constant γ, i.e., an ≡ γ [11].

RGGs can be described by a variety of random matrices such as adjacency matri-
ces, transition probability matrices and normalized Laplacian. The spectral properties
of those random matrices are fundamental tools to predict and analyze complex net-
works behavior. The work in [16] investigates the combinatorial Laplacian spectra
of RGGs and shows that the spectrum consists of both discrete and continuous parts.
The discrete part of the spectrum is a collection of Dirac delta peaks at integer values.
The work in [17] shows that the peaks appear mainly due to the existence of sym-
metric motifs2 that occur abundantly in RGGs compared to ER graphs. Other works
analyzed the symmetric motifs in RGGs and looked at the probabilities of their ap-
pearance [18].

Several works analyzed the spectra of Euclidean random matrices given byHn =
f(‖ xi − xj ‖2) when n and d grows large for different functions f [19], [20].
However, the obtained results cannot be applied to our problem as we assume that the
dimension d stays fixed. The work in [20] also studies the LED of Euclidean random
matrices Hn when the dimension d remains fixed. It shows under some conditions
that in fact the LED of Hn converges to the Dirac distribution at 0. However, the
results in [20] require the continuity of the function f and they cannot be applied to
the step function considered in this work.

Regarding spectral properties of the adjacency matrix of RGGs, in [21] and [22],
the authors show that the spectral distribution of the adjacency matrix has a limit in
the thermodynamic regime as n → ∞. Due to the difficulty to compute exactly this
spectral measure, the work in [21] proposes an approximation for it as γ →∞. In [9],
a closed form expression for the asymptotic spectral moments of the adjacency matrix
of G(Xn, rn) is derived in the connectivity regime. Then, an analytical upper bound
for the spectral radius is derived in order to study the behavior of the viral infection
in an RGG. Furthermore, the author in [23] shows that in the connectivity regime,
the spectral measures of the transition probability matrix of the random walk in an
RGG and in a deterministic geometric graph with nodes in a grid (DGG) converge to
the same limit as n → ∞. However, the author in [23] does not study the full range
of the connectivity regime and in the proof of his result, a condition is enforced on
the radius rn using the concept of the minimum bottleneck matching distance. The
condition enforced on rn in [23] implies that for ε > 0, the result holds only for
RGGs with an average vertex degree an that scales as Ω (logε(n)

√
n), when d = 1,

as Ω
(
log

3
2+ε(n)

)
when d = 2, as Ω

(
log1+ε(n)

)
for d ≥ 3.

Compared to [23], in this work we study the LED of the normalized Laplacian
for RGGs in the connectivity regime for a wider range of scaling laws of the average
vertex degree an, or equivalently a wider range of scaling laws of the radius rdn. More
specifically, for d ≥ 1, we show that the LEDs of the normalized Laplacian for RGGs
and for DGGs converge to same limit when an = Ω(log(n)). Additionally, we extend
the work in [23] and study the LED of the normalized Laplacian for RGGs formed
by using any `p-metric, p ∈ [1,∞]. Importantly, we study the LED of the normal-

2 Symmetric motifs are subsets of nodes which have the same adjacencies.
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ized Laplacian for RGGs in the thermodynamic regime. To overcome the problem
of singularities due to isolated nodes in the thermodynamic regime, we investigate
the LED of the normalized Laplacian on a modified graph by adding auxiliary edges
among all the nodes with a certain weight. The corresponding normalized Laplacian
is known as the regularized normalized Laplacian [24].

To the best of our knowledge, explicit expressions for the LED of the combina-
torial Laplacian and normalized Laplacian for RGGs are still not known in the full
range of the scaling laws for the radius rdn in the connectivity regime, nor in the
thermodynamic regime. In this work, we extend the work in [23] in various ways.
Namely, we provide a bound on the Levy distance between the DGG-based approx-
imation and the actual distribution. More precisely, in the connectivity regime, we
prove that the LEDs of the normalized Laplacian for an RGG and for a DGG converge
to the same limit in the full range of scaling law for an as n → ∞. This result holds
for any `p-metric and any fixed dimension d ≥ 1. In addition, we show that when
an ≥ log1+ε(n) for ε > 0, the rate of convergence is O

(
1/n(an/12 log(n))−1)). In

particular, we show that, when the average vertex degree an = c log(n), for c > 24,
the rate of convergence is O

(
1/nc/12−1

)
, and when c ≤ 24, a slower rate of con-

vergence holds and scales as O (1/n). When the graph is dense, i.e., an scales as
Ω(n), the LED of the normalized Laplacian for an RGG converges with the rate of
convergenceO

(
ne−n/12

)
. Finally, by using the Chebyshev distance, i.e., `∞-metric,

we show that the LED of the normalized Laplacian of an RGG converges to the Dirac
distribution at one in the full range of the connectivity regime as n→∞. In the ther-
modynamic regime, we show that the LED of the regularized normalized Laplacian
of an RGG obtained by using any `p-metric can be approximated by the LED of the
regularized normalized Laplacian of a DGG, with an error bound dependent upon the
average vertex degree. Then, by using the Chebyshev distance, we provide an ana-
lytical approximation for the eigenvalues of the regularized normalized Laplacian for
an RGG in the thermodynamic case.

The rest of this paper is organized as follows. In Section 2, we first describe the
model, then we prove our main results on the concentration of the spectral measure
of large RGGs. In particular, we provide an approximation for the eigenvalues of the
regularized normalized Laplacian matrix in the thermodynamic regime, and we give
its exact LED in the connectivity regime. Numerical results are given in Section 3 to
validate the theoretical results by comparing the LED obtained analytically and by
simulation. Finally, conclusions and implications are drawn in Section 4.

2 Spectral Analysis of Random Geometric Graphs

In this section, we study the spectrum of the regularized normalized Laplacian matrix
of G(Xn, rn) in the connectivity and thermodynamic regimes under any `p-metric
as d remains fixed and n → ∞. One important approach to study the spectrum of
G(Xn, rn) is based on analyzing the spectrum of a DGG [23]. As for RGGs, we let
Dn be the set of n grid nodes that are at the intersections of all parallel hyperplanes
with separation n−1/d, and define a deterministic graph G(Dn, rn) in the grid by
connecting two nodes x′i, x

′
j ∈ Dn if ‖ x′i − x′j ‖p≤ rn for p ∈ [1,∞], see Fig.



On the Normalized Laplacian Spectra of Random Geometric Graphs 5

(a) (b)

Fig. 1 Illustration of an RGG (a) and a DGG (b) for n = 16.

1(b). Given two nodes in G(Xn, rn) or G(Dn, rn), we assume that there is always
at most one edge between them. There is no edge from a vertex to itself. Moreover,
we assume that the edges are not directed. In the following, we define the normalized
Laplacian matrix for G(Xn, rn) and G(Dn, rn).

Let N (xi) be the set of neighbors of vertex xi in G(Xn, rn) and N (x′i) be the
set of neighbors of vertex x′i in G(Dn, rn). Let L(Xn) and L(Dn) be the normalized
Laplacian matrices for G(Xn, rn) and G(Dn, rn), respectively, with entries,

L(Xn)ij = δij −
χ[xi ∼ xj ]√
N(xi)N(xj)

, L(Dn)ij = δij −
χ[x′i ∼ x′j ]√
N(x′i)N(x′j)

, (1)

where N(xi) and N(x′i) are the sizes of the two setsN (xi) andN (x′i), respectively,
and δij is the Kronecker delta function. The term χ[xi ∼ xj ] takes unit value when
there is an edge between nodes xi and xj in G(Xn, rn) and zero otherwise, i.e.,

χ[xi ∼ xj ] =

{
1, ‖xi − xj‖p ≤ rn, i 6= j
0, otherwise.

A similar definition holds for χ[x′i ∼ x′j ] defined over the nodes in G(Dn, rn).
Recall that an denotes the average vertex degree in G(Xn, rn) and, in particular,
in the thermodynamic regime an ≡ γ for a constant γ. In G(Dn, rn), the number
of neighbors of each vertex is the same. For simplicity, we denote this number by
a′n = N(x′i). In particular, in the thermodynamic regime N(x′i) = γ′. We have also
N(xi, x

′
i) =

∑
j

χ[xi ∼ xj ]χ[x′i ∼ x′j ] ≤ a′n ∀ i, j.

Note that the above formal definition of the normalized Laplacian in (1) requires
G(Xn, rn) and G(Dn, rn) not to have isolated vertices. To overcome the problem
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of singularities due to isolated vertices in the termodynamic regime, we follow the
scheme proposed in [24]. It corresponds to the normalized Laplacian matrix on a
modified graph constructed by adding auxiliary edges among all the nodes with
weight α

n > 0. Specifically, the entries of the normalized Laplacian matrices are
modified as

L̂(Xn)ij = δij−
χ[xi ∼ xj ] + α

n√
(N(xi) + α)(N(xj) + α)

, L̂(Dn)ij = δij−
χ[x′i ∼ x′j ] + α

n

(a′n + α)
.

(2)
The corresponding matrices are referred to as the regularized normalized Lapla-

cian matrices [24]. Observe that for α = 0, (2) reduces to (1). The matrices L̂(Xn)
and L̂(Dn) are symmetric, and consequently, their spectra consist of real eigenvalues.
We denote by {µ̂i, i = 1, .., n} and {λ̂i, i = 1, .., n} the sets of all real eigenvalues of
the real symmetric square matrices L̂(Xn) and L̂(Dn) of order n, respectively. Then,
the empirical spectral distribution functions of L̂(Xn) and L̂(Dn) are defined as

F L̂(Xn)(x) =
1

n

n∑
i=1

I{µ̂i ≤ x}, and F L̂(Dn)(x) =
1

n

n∑
i=1

I{λ̂i ≤ x},

where I{B} denotes the indicator of an event B. To show that F L̂(Dn) is a good ap-
proximation for F L̂(Xn) when n is large in both the connectivity and thermodynamic
regimes, we use the Levy distance between the two distribution functions defined as
follows.

Definition 1 ([25], page 257) (Levy Distance) Let FA and FB be two distribution
functions on R. The Levy distance L(FA, FB) is defined as the infimum of all posi-
tive ε such that, for all x ∈ R,

FA(x− ε)− ε ≤ FB(x) ≤ FA(x+ ε) + ε.

Lemma 1 ([2], page 614) (Difference Inequality) Let A and B be two n × n Hermi-
tian matrices with eigenvalues λ1, ..., λn and µ1, ..., µn, respectively. Then,

L3(FA, FB) 6
1

n
tr(A−B)2,

where L(FA, FB) denotes the Levy distance between the empirical distribution func-
tions FA and FB of the eigenvalues of A and B, respectively.

In the following Lemma 2, we upper bound the Levy distance between the distri-
bution functions F L̂(Xn) and F L̂(Dn) for any average vertex degree an.

Lemma 2 (Upper Bound on the Levy Distance between F L̂(Xn) and F L̂(Dn)) For
d > 1 and p ∈ [1,∞], the Levy distance between the distribution functions F L̂(Xn)

and F L̂(Dn) is upper bounded as follows:
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L3
(
F L̂(Xn), F L̂(Dn)

)
≤

∣∣∣∣∣∣∣
1

n

∑
i

∑
j

(
χ[xi ∼ xj ] +

α

n

)2
(N(xi) + α)(N(xj) + α)

− b

n(a′n + α)2

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
2b

n(a′n + α)2
−

2

(∑
i

N(xi, x
′
i) +

α

n

∑
i

N(xi) + αa′n + α2

)
n(a′n + α)

(∑
i

√
N(xi) + α

)2

∣∣∣∣∣∣∣∣∣ ,
where b = na′n + α2 + 2αa′n.

Proof See Appendix A.

We note that in the thermodynamic regime, for d > 1, the Levy distance between
the distribution functions F L̂(Xn) and F L̂(Dn) is upper bounded as in Lemma 2 by
letting an ≡ γ being a positive constant. When the graph is connected, it is not nec-
essary to work with the regularized normalized Laplacian, but we consider only the
normalized Laplacian in (1) by enforcing α = 0 in (2). Therefore, in the connectivity
regime, the Levy distance between the distribution functions FL(Xn) and FL(Dn) is
bounded as follows:

L3
(
FL(Xn), FL(Dn)

)
≤

∣∣∣∣∣∣ 1n
∑
i

∑
j

χ[xi ∼ xj ]
2

N(xi)N(xj)
− 1

a′n

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
2

a′n
−

2
∑
i

N(xi, x
′
i)

na′n

(∑
i

√
N(xi)

)2

∣∣∣∣∣∣∣∣∣ .
Next, we state a general theorem on the concentration of the regularized normal-

ized Laplacian for any average vertex degree an. Then, we specify the result for both
the connectivity and thermodynamic regimes.

Theorem 1 (Concentration Theorem for the Regularized Normalized Laplacian Ma-
trix in RGGs) For d ≥ 1, p ∈ [1,∞] and t > max

[
4(n+2α)a′n+4α2

n(a′n+α)
2 , 8(n+2α)an+4α2

n(an+α)2

]
,

the inequality holds:

P
{
L3
(
F L̂(Xn), F L̂(Dn)

)
> t
}
≤ 2P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > tn(an + α)

16

}

+ 2P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > tn(an + α)2 − 4α2

8
(
1 + 2α

n

) − nan

}

+ P

{∑
i

|an −N(xi)|2 >
tn(an + α)2

8

}
.

(3)

Proof See Appendix B.
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Based on Theorem 1, we state the following corollary on the concentration of the
regularized normalized Laplacian in RGGs specific to the thermodynamic regime.

Corollary 1 (Concentration of the Regularized Normalized Laplacian in the Ther-
modynamic Regime) In the thermodynamic regime, i.e., an ≡ γ finite, for d ≥ 1,
p ∈ [1,∞] and t > max

[
4(n+2α)γ′+4α2

n(γ′+α)2 , 8(n+2α)γ+4α2

n(γ+α)2

]
, we get

P
{
L3
(
F L̂(Xn), F L̂(Dn)

)
> t
}
≤ 320(n− 1)ϑ

tn2(γ + α)2
,

where ϑ =
[
θ(d) + 2(n− 2)(θ(d))2rdn

]
.

Under the conditions described above, for every t > max
[

4γ′

(γ′+α)2 ,
8γ

(γ+α)2

]
as

n→∞,
lim
n→∞

P
{
L3
(
F L̂(Xn), F L̂(Dn)

)
> t
}
= 0.

Proof See Appendix C.

In the thermodynamic regime, F L̂(Dn) approximates F L̂(Xn) with an error bound
of max

[
4
γ′ ,

8
γ

]
when n → ∞ and α → 0, which in particular implies that the error

bound becomes small for large values of the degree.

In the following Lemma 3, we provide a lower bound on the degree of the vertices
in G(Dn, rn), useful for the following studies.

Lemma 3 (Lower Bound on the Vertex Degree of the DGG) For any chosen `p-metric
with p ∈ [1,∞], d ≥ 1 and an ≥ 2d1+1/p

2d−1 , we have

a′n ≥
an

2d1+1/p
,

where an is the average vertex degree of G(Xn, rn) and a′n is the degree of each
vertex in G(Dn, rn).
Proof See Appendix D.

The following theorem shows that the LED of the normalized Laplacian for the
RGG and the DGG converges to the same limit in the connectivity regime as n→∞.
Theorem 2 (Concentration of the Normalized Laplacian in the Connectivity Regime)
In the connectivity regime, i.e., an = Ω(log(n)), for an ≥ 2d1+1/p

2d−1 , d ≥ 1, p ∈ [1,∞]

and t > 8d1+1/p

an
, we have

P
{
L3
(
FL(Xn), FL(Dn)

)
> t
}
≤ min

[
320(n− 1)ϑ

tn2(γ + α)2
, 6n exp

(
− (an − rn)

12

)]
,

where ϑ =
[
θ(d) + 2(n− 2)(θ(d))2rdn

]
.

Under the conditions described above, for every t > 0,

lim
n→∞

P
{
L3
(
FL(Xn), FL(Dn)

)
> t
}
= 0.

Proof See Appendix C.



On the Normalized Laplacian Spectra of Random Geometric Graphs 9

We have ϑ < θ(d)an

(
1
an

+ 2
)

and t > 8d1+1/p

an
then,

A =
320(n− 1)ϑ

tn2a2n
<

320ϑ

tna2n
<

40ϑ

nand1+1/p
=

40θ(d)
(

1
an

+ 2
)

nd1+1/p
,

and
B =

6n

exp
(
an
12

[
1− rn

an

]) =
6

n

an
12 log(n)

[1− rnan ]−1
,

therefore,

P
{
L3
(
FL(Xn), FL(Dn)

)
> t
}
< min

40θ(d)
(

1
an

+ 2
)

nd1+1/p
,

6

n
an

12 log(n) [1−
rn
an
]−1

 .
Note that, when an = c log (n), c > 24, then B < A and the rate of convergence

is O
(
1/nc/12−1

)
, and when c ≤ 24, the rate of convergence is O (1/n). For ε > 0

and an ≥ log1+ε (n), the rate of convergence is O
(
1/n(an/12 log (n))−1). When the

graph is dense, i.e., an scales as Ω(n), the LED of the normalized Laplacian of the
RGG converges to the Dirac measure at one with rate of convergence O

(
ne−n/12

)
.

Hence, the result given in Theorem 2 shows that the LEDs of the normalized Lapla-
cian for G(Xn, rn) and G(Dn, rn) converge to the same limit as n → ∞ under any
chosen `p-metric, and the convergence holds in the full range of the connectivity
regime, i.e, an = Ω(log(n)).

In the following, we use the structure of the DGG to approximate the eigenvalues
of the regularized normalized Laplacian matrix for G(Xn, rn) in both the connec-
tivity and thermodynamic regimes using the Chebyshev distance. Let us consider a
d-dimensional DGG with n = Nd nodes and assume the use of the Chebyshev dis-
tance. Then, the degree of a vertex in G(Dn, rn) is given as [16]

a′n = (2kn + 1)d − 1, with kn = bNrnc ,

where bxc is the integer part, i.e., the greatest integer less than or equal to x. Note
that when d = 1, the Chebyshev distance and the Euclidean distance are the same.

In the following Lemma 4, by using the expression of the eigenvalues of the
adjacency matrix for a DGG under the Chebyshev distance [16], we approximate the
eigenvalues of the regularized normalized Laplacian for G(Xn, rn) when the number
of nodes n is fixed and for any an. Then, we utilize this result to determine the LED of
the normalized Laplacian in the connectivity regime as n → ∞ in Corollary 2, and
we provide the analytical approximation for the eigenvalues in the thermodynamic
regime as n goes to infinity in Corollary 3.

Lemma 4 (Eigenvalue Distribution of the Regularized Normalized Laplacian Ma-
trix) When using the Chebyshev distance and d ≥ 1, the eigenvalues of L̂(Dn) are
given by

λ̂m1,...,md = 1− 1

(a′n + α)

d∏
s=1

sin(msπN (a′n + 1)1/d)

sin(msπN )
+

1− αδm1,...,md

(a′n + α)
, (4)
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with m1, ...,md ∈ {0, ...N − 1} and δm1,...,md = 1 when m1, ...,md = 0 otherwise
δm1,...,md = 0. In (4), n = Nd, a′n = (2kn + 1)d − 1 and kn = bNrnc.

Proof See Appendix E.

In the following Corollary 2, we provide the eigenvalue distribution of the nor-
malized Laplacian matrix for G(Xn, rn) in the connectivity regime as an ≥ 2d1+1/p

and n→∞.

Corollary 2 (Eigenvalue Distribution of the Normalized Laplacian Matrix in the
Connectivity Regime) In the connectivity regime, i.e., an = Ω(log(n)), using the
Chebyshev distance, an ≥ 2d1+1/p, d ≥ 1, and letting α → 0, the eigenvalues of
L(Dn) are given by

λm1,...,md = 1− 1

a′n

d∏
s=1

sin(msπN (a′n + 1)1/d)

sin(msπN )
+

1

a′n
, (5)

withm1, ...,md ∈ {0, ...N−1}. In (5), n = Nd, a′n = (2kn+1)d−1 and kn = bNrnc.
Then, in particular, as n → ∞, the LED of L(Dn) converges to the Dirac measure
at one.

In the following Corollary 3, we approximate the eigenvalues of the regularized
normalized Laplacian L̂(Xn) in the thermodynamic regime as n→∞.

Corollary 3 (Eigenvalues of the Regularized Normalized Laplacian in the Thermo-
dynamic Regime) In the thermodynamic regime, by using the Chebyshev distance,
γ ≥ 1 and d ≥ 1, as n→∞, the eigenvalues of L̂(Dn) are given by

λ̂f1,...,fd = 1− 1

(γ′ + α)

d∏
s=1

sin(πfs(γ
′ + 1)1/d)

sin(πfs)
+

1− αδf1,...,fd
(γ′ + α)

, (6)

where s ∈ {1, ..., d}, ms ∈ {0, ...,N} and fs = ms
N in Q ∩ [0, 1] with Q denotes

the set of rational numbers. Also, γ′ = (2
⌊
γ1/d

⌋
+ 1)d − 1 and δf1,...,fd = 1 when

f1, ..., fd = 0 otherwise δf1,...,fd = 0.

In Lemma 4, we generalize the results given in [23], [20] and [21]. On one hand,
in [23], the author shows that the spectral measures of the transition probability ma-
trix of the random walk in RGGs and DGGs converge to the same limit in a specific
range of the connectivity regime. On the other hand, in [20], the author shows that,
for a fixed dimension d and n → ∞, the LED of Hn = f(‖ xi − xj ‖2) converges
to the Dirac measure in zero under some conditions on the function f . However, the
techniques used in [20] cannot be applied to geometric graphs since the function f is
required to be continuous. Additionally, the author of [21] characterizes the spectral
measure of a normalized adjacency matrix in the dense regime. In contrast, in this
work we study the LED of the normalized Laplacian matrix for an RGG formed by
using any `p-metric, 1 ≤ p ≤ ∞, and we show that it converges to the same limit as
for the normalized Laplacian for a DGG in the full range of the connectivity regime
as n → ∞. In particular, we show that they converge to the Dirac measure at one as
n goes to infinity in the full range of the connectivity regime.



On the Normalized Laplacian Spectra of Random Geometric Graphs 11

3 Numerical Results

In this section, we validate our analytical results obtained in Section 2 by numerical
computations.

More specifically, we corroborate our results on the spectrum of the regular-
ized normalized Laplacian matrix of RGGs in the connectivity and thermodynamic
regimes by comparing the simulated and the analytical spectra.

Fig. 2(a) illustrates the empirical spectral distribution in the thermodynamic regime
of a realization for an RGG with n = 30000 vertices, α = 0.001 and the correspond-
ing DGG. The theoretical distribution is obtained from Corollary 3. We notice that
the gap that appears between the eigenvalue distributions of the RGG and the DGG
is upper bounded as in Corollary 1.

Here, we provide an additional example in the thermodynamic regime to quantify
the error between F L̂(Xn) and F L̂(Dn) for different values of γ using the Chebyshev
distance.

1) When γ = 100 and α = 10−3, d = 1 then as n→∞

P
{
L3
(
F L̂(Xn), F L̂(Dn)

)
> 0.019

}
→ 0.

2) When γ = 120 and α = 10−3, d = 1 then as n→∞

P
{
L3
(
F L̂(Xn), F L̂(Dn)

)
> 0.015

}
→ 0.

From these examples, we notice that for γ = 100, the LED of the regularized
normalized Laplacian in the RGG can be approximated by the LED of a DGG with
an error bound of 0.019 when α = 10−3. Then, as we increase the average vertex
degree γ to γ = 120, we can notice a certain improvement. Therefore, the larger the
average vertex degree γ is, the tighter the approximation becomes.

In Fig. 2(b) we compare the spectral distribution of a DGG (continuous lines)
with the one for an RGG with increasing the number of nodes n (dashed line for
n = 500 and star markers for n = 30000) in the connectivity regime. We notice
that the curves corresponding to the RGG and the DGG match very well when n is
large which confirm the concentration result given in Theorem 2. Also, it appears that
by increasing n, the eigenvalue distribution converges to the Dirac measure at one,
which confirms the result obtained in Corollary 2.

4 Conclusion

In this work, we studied in details the spectrum of RGGs in both the connectivity
and thermodynamic regimes. In particular, we analyzed the LED of the regularized
normalized Laplacian of RGGs. We first proposed an approximation for the LED and
obtained a bound on the Levy distance between this approximation and the actual
distribution. In the thermodynamic regime, where the average vertex degree is fixed,
we found that the LEDs of the regularized normalized Laplacian matrix for an RGG
can be approximated by the LED of a DGG. Then, we found that the LEDs of the
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(a) Thermodynamic regime, γ = 12, n = 30000 and
α = 0.001.

(b) Connectivity regime for different n and rn =

log
3
2 (n)/n.

Fig. 2 Comparison between the simulated and the analytical spectral distributions of an RGG for d = 1.

normalized Laplacian for an RGG and for a DGG converge to the Dirac measure at
one in the full range of the connectivity regime.

As future works, we will analyze the LED of the adjacency matrix in both the
connectivity and thermodynamic regimes to derive their eigenvalue distributions. Fur-
thermore, we intend to apply these theoretical results to test the hypothesis that a
complex network has underlying geometric structure, or to analyze the spectral di-
mension of a network.
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Appendices

A Proof of Lemma 2

In this Appendix, we upper bound the Levy distance between the distribution functions F L̂(Xn) and
F L̂(Dn). The following lemma is useful for the following studies.

Lemma 5 If ai ≥ 0 and bi > 0 for all i, and there exists an ai > 0, then

n∑
i=1

ai

bi
>

n∑
i=1

ai

n∑
i=1

bi

.

In the following, we upper bound the Levy distance between F L̂(Xn) and F L̂(Dn).
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L3
(
F L̂(Xn), F L̂(Dn)

)
≤

1

n
Trace

[
L̂(Xn)− L̂(Dn)

]2
=

1

n

∑
i

∑
j

[
χ[xi ∼ xj ] +

α
n√

(N(xi) + α)(N(xj) + α)
−

χ[x′i ∼ x′j ] +
α
n√

(a′n + α)(a′n + α)

]2

=
1

n

∑
i

∑
j

 (
χ[xi ∼ xj ] +

α
n

)2
(N(xi) + α)(N(xj) + α)

+

(
χ[x′i ∼ x′j ] +

α
n

)2
(a′n + α)2


−

2

n

∑
i

∑
j

(
χ[xi ∼ xj ] +

α
n

) (
χ[x′i ∼ x′j ] +

α
n

)
(a′n + α)

√
(N(xi) + α)(N(xj) + α)

(a)

≤
b

n(a′n + α)2
−

2

(∑
i

N(xi, x
′
i) +

α
n

∑
i

N(xi) + αa′n + α2

)
n(a′n + α)

(∑
i

√
N(xi) + α

)2

+
1

n

∑
i

∑
j

(
χ[xi ∼ xj ] +

α
n

)2
(N(xi) + α)(N(xj) + α)

(b)

≤

∣∣∣∣∣∣ 1n
∑
i

∑
j

(
χ[xi ∼ xj ] +

α
n

)2
(N(xi) + α)(N(xj) + α)

−
b

n(a′n + α)2

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
2b

n(a′n + α)2
−

2

(∑
i

N(xi, x
′
i) +

α
n

∑
i

N(xi) + αa′n + α2

)
n(a′n + α)

(∑
i

√
N(xi) + α

)2

∣∣∣∣∣∣∣∣∣ ,
where, b = na′n + 2αa′n + α2. Step (a) follows from

∑
j
χ[xi ∼ xj ] = N(xi),

∑
j
χ[x′i ∼ x′j ] =

a′n, N(xi, x
′
i) =

∑
j
χ[xi ∼ xj ]χ[x

′
i ∼ x′j ] and Lemma 5. By applying the triangle inequality, step (b)

follows. ut

B Proof of Theorem 1

In this appendix, we provide an upper bound for the probability that the Levy distance between the distri-

bution functions F L̂(Xn) and F L̂(Dn) is higher than t > max

[
4(n+2α)a′n+4α2

n(a′n+α)
2 ,

8(n+2α)an+4α2

n(an+α)2

]
.

P
{
L3
(
F L̂(Xn), F L̂(Dn)

)
> t
}
≤ P


∣∣∣∣∣∣ 1n
∑
i

∑
j

(
χ[xi ∼ xj ] +

α
n

)2
(N(xi) + α)(N(xj) + α)

−
b

n(a′n + α)2

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
2b

n(a′n + α)2
−

2

(∑
i

N(xi, x
′
i) +

α
n

∑
i

N(xi) + αa′n + α2

)
n(a′n + α)

(∑
i

√
N(xi) + α

)2

∣∣∣∣∣∣∣∣∣ > t


≤ P


∣∣∣∣∣∣ 1n
∑
i

∑
j

(
χ[xi ∼ xj ] +

α
n

)2
(N(xi) + α)(N(xj) + α)

−
b

n(a′n + α)2

∣∣∣∣∣∣ > t

2

+
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P


∣∣∣∣∣∣∣∣∣

2b

n(a′n + α)2
−

2

(∑
i

N(xi, x
′
i) +

α
n

∑
i

N(xi) + αa′n + α2

)
n(a′n + α)

(∑
i

√
N(xi) + α

)2

∣∣∣∣∣∣∣∣∣ >
t

2

 .

Define,

A =

∣∣∣∣∣∣∣∣∣
2b

n(a′n + α)2
−

2

(∑
i

N(xi, x
′
i) +

α
n

∑
i

N(xi) + αa′n + α2

)
n(a′n + α)

(∑
i

√
N(xi) + α

)2

∣∣∣∣∣∣∣∣∣ ,
and

B =

∣∣∣∣∣∣ 1n
∑
i

∑
j

(
χ[xi ∼ xj ] +

α
n

)2
(N(xi) + α)(N(xj) + α)

−
b

n(a′n + α)2

∣∣∣∣∣∣ .
In the following, we upper bound P

{
A >

t

2

}
and P

{
B >

t

2

}
.

First, we write P

{
A >

t

2

}
as

P

{
A >

t

2

}
= P


∣∣∣∣∣∣∣∣∣

2b

n(a′n + α)2
−

2

(∑
i

N(xi, x
′
i) +

α
n

∑
i

N(xi) + αa′n + α2

)
n(a′n + α)

(∑
i

√
N(xi) + α

)2

∣∣∣∣∣∣∣∣∣ >
t

2


= P


∣∣∣∣∣∣∣∣∣1−

(a′n + α)

[∑
i

N(xi, x
′
i) +

α
n

∑
i

N(xi) + αa′n + α2

]
b

(∑
i

√
N(xi) + α

)2

∣∣∣∣∣∣∣∣∣ >
tn(a′n + α)2

4b


(a)
= P

b
(∑

i

√
N(xi) + α

)2

− (a′n + α)

[∑
i

N(xi, x
′
i) +

α

n

∑
i

N(xi)

+ αa′n + α2
]
>

tn(a′n + α)2

4

(∑
i

√
N(xi) + α

)2


= P


(
b−

tn(a′n + α)2

4

)(∑
i

√
N(xi) + α

)2

> (a′n + α)

[∑
i

N(xi, x
′
i) +

α

n

∑
i

N(xi) + αa′n + α2

]}
.

Note that
∑
i

N(xi, x
′
i) ≤ na′n and N(xi) ≤ n. Then, in step (a) for n sufficiently large, we remove

the absolute value because

∑
i

N(xi, x
′
i) +

α
n

∑
i

N(xi) + αa′n + α2

b

(∑
i

√
N(xi) + α

)2
≤
na′n + αn+ αa′n + α2

b

(∑
i

√
N(xi) + α

)2

≤

(
1 + α

a′n
+ α
n
+ α2

na′n

)
(
1 + 2α

n
+ α2

na′n

)
n2α

≤ 1.
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Notice from the last equality that,
tn(a′n + α)2

4
> b⇔ t >

4na′n + 4α2 + 8αa′n
n(a′n + α)2

. Then

P

{
A >

t

2

}
= 0 for t >

4na′n + 4α2 + 8αa′n
n(a′n + α)2

. (7)

We continue further by bounding P

{
B >

t

2

}
as

P

{
B >

t

2

}
= P


∣∣∣∣∣∣ 1n
∑
i

∑
j

(
χ[xi ∼ xj ] +

α
n

)2
(N(xi) + α)(N(xj) + α)

−
b

n(a′n + α)2

∣∣∣∣∣∣ > t

2


= P


∣∣∣∣∣∣ 1n
∑
i

∑
j

( (
χ[xi ∼ xj ] +

α
n

)2
(N(xi) + α)(N(xj) + α)

−
(χ[xi ∼ xj ] +

α
n
)2

(an + α)2

+
(χ[xi ∼ xj ] +

α
n
)2

(an + α)2

)
−

b

n(a′n + α)2

∣∣∣∣∣ > t

2

}

6 P


∣∣∣∣∣∣ 1n
∑
i

∑
j

( (
χ[xi ∼ xj ] +

α
n

)2
(N(xi) + α)(N(xj) + α)

−
(χ[xi ∼ xj ] +

α
n
)2

(an + α)2

)∣∣∣∣∣∣ > t

4


+ P


∣∣∣∣∣∣ 1n
∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2
−

b

n(a′n + α)2

∣∣∣∣∣∣ > t

4

 .

Let

B1 =

∣∣∣∣∣∣ 1n
∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2
−

b

n(a′n + α)2

∣∣∣∣∣∣ ,
and

B2 =

∣∣∣∣∣∣ 1n
∑
i

∑
j

(
(χ[xi ∼ xj ] +

α
n
)2

(N(xi) + α)(N(xj) + α)
−

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2

)∣∣∣∣∣∣ .

In the following, we upper bound the two probabilities P
{
B1 >

t

4

}
and P

{
B2 >

t

4

}
.

First, for t > 4na′n+4α2+8αa′n
n(a′n+α)

2 , we write P

{
B1 >

t

4

}
as

P

{
B1 >

t

4

}
= P


∣∣∣∣∣∣ 1n
∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2
−

b

n(a′n + α)2

∣∣∣∣∣∣ > t

4


= P


∣∣∣∣∣∣
∑
i

∑
j

(
χ[xi ∼ xj ] +

α

n

)2
−
b(an + α)2

(a′n + α)2

∣∣∣∣∣∣ > nt(an + α)2

4


(a)

≤ P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > nt(an + α)2 − 4α2

4
(
1 + 2α

n

) − nan

}
. (8)

Step (a) follows from
∑
i

∑
j

(
χ[xi ∼ xj ] +

α
n

)2
=
(
1 + 2α

n

)∑
i

N(xi) +α2 and substituting the

value of b.

We continue further by upper bounding the term P

{
B2 >

t

4

}
as
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P

{
B2 >

t

4

}
= P


∣∣∣∣∣∣
∑
i

∑
j

(
(χ[xi ∼ xj ] +

α
n
)2

(N(xi) + α)(N(xj) + α)
−

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2

)∣∣∣∣∣∣ > tn

4


= P

∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(N(xi) + α)(N(xj) + α)
−
∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2
>
tn

4


+ P

∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2
−
∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(N(xi) + α)(N(xj) + α)
>
tn

4

 .

Define

C1 =
∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2
−
∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(N(xi) + α)(N(xj) + α)
,

C2 =
∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(N(xi) + α)(N(xj) + α)
−
∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2
.

In the following, we upper bound P

{
C1 >

tn

4

}
and P

{
C2 >

tn

4

}
.

We start first with P

{
C1 >

tn

4

}

P

{
C1 >

tn

4

}
= P

∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2
−
∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(N(xi) + α)(N(xj) + α)
>
tn

4


(a)

≤ P


∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2
−

(
1 + 2α

n

)∑
i

N(xi) + α2(∑
i

N(xi) + nα

)∑
j
(N(xj) + α)

>
tn

4


= P


∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2
−

α

[(
1
α
+ 2
n

)∑
i

N(xi) + α

]
n

(
1
n

∑
i

N(xi) + α

)∑
j
(N(xj) + α)

>
tn

4


(b)

≤ P


∑
i,j

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2
−

α

[(
1
α
+ 2
n

)∑
i

N(xi) + α

]
n

[(
1
α
+ 2
n

)∑
i

N(xi) + α

]∑
j
(N(xj) + α)

>
tn

4

 .

Step (a) follows from Lemma 5 and step (b) from
(
1
α
+ 2
n

)∑
i

N(xi) + α > 1
n

∑
i

N(xi) + α.

P

{
C1 >

tn

4

}
= P

(n+ 2α)
∑
i

N(xi)−
α(an + α)2∑
j

N(xj) + nα
>
tn2(an + α)2

4
− nα2


≤ P

(n+ 2α)

∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣+
∣∣∣∣∣∣∣∣(n+ 2α)nan −

α(an + α)2∑
j

N(xj) + nα

∣∣∣∣∣∣∣∣
>
tn2(an + α)2

4
− nα2

}
.
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Then,

P

{
C1 >

tn

4

}
≤ P


∣∣∣∣∣∣∣∣(n+ 2α)nan −

α(an + α)2∑
j

N(xj) + nα

∣∣∣∣∣∣∣∣ >
tn2(an + α)2 − 4nα2

8


+ P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > tn(an + α)2 − 4α2

8
(
1 + 2α

n

) }
.

Let

C3 = P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > tn(an + α)2 − 4α2

8
(
1 + 2α

n

) }
, (9)

and

D =

∣∣∣∣∣∣∣∣(n+ 2α)nan −
α(an + α)2∑
j

N(xj) + nα

∣∣∣∣∣∣∣∣ .

P

{
D >

tn2(an + α)2 − 4nα2

8

}
= P


∣∣∣∣∣∣∣∣(n+ 2α)nan −

α(an + α)2∑
j

N(xj) + nα

∣∣∣∣∣∣∣∣ >
tn2(an + α)2 − 4nα2

8


(a)

≤ P


[
(n+ 2α)nan +

4nα2 − tn2(an + α)2

8

]
×

∑
j

N(xj) + nα

 > α(an + α)2

 .

Step (a) follows from the inequality (n+ 2α)nan >
α(an + α)2∑
j

N(xj) + nα
. Notice that 8 (n+ 2α)nan+

4nα2 < tn2(an + α)2 ⇔ t >
8 (n+ 2α) an + 4α2

n(an + α)2
. Then,

P

{
D >

tn2(an + α)2 − 4nα2

8

}
= 0 for t >

8 (n+ 2α) an + 4α2

n(an + α)2
. (10)

Finally, we upper bound the remaining probability P

{
C2 >

tn

4

}
as

P

{
C2 >

tn

4

}
= P

∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(N(xi) + α)(N(xj) + α)
−
∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2
>
tn

4


= P

∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)

(N(xi) + α)

(χ[xi ∼ xj ] +
α
n
)

(N(xj) + α)

−
∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2
>
tn

4


(a)

≤ P


∑

i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(N(xi) + α)2

 1
2
∑

i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(N(xj) + α)2

 1
2

−
∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2
>
tn

4

 .
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P

{
C2 >

tn

4

}
= P

∑
i

∑
j

(
χ[xi ∼ xj ] +

α
n

)2
(N(xi) + α)2

−
∑
i

∑
j

(χ[xi ∼ xj ] +
α
n
)2

(an + α)2
>
tn

4

 .

(11)
Step (a) follows from applying Cauchy-Schwarz inequality. Then

P

{
C2 >

tn

4

}
≤ P

∑
i

∑
j

(
χ[xi ∼ xj ] +

α

n

)2 ∣∣∣∣ 1

(N(xi) + α)2
−

1

(an + α)2

∣∣∣∣ > tn

4


≤ P

{∑
i

∣∣(an + α)2 − (N(xi) + α)2
∣∣ > tn(an + α)2

4

}

≤ P

{∑
i

|an −N(xi)|2 + 2(an + α)
∑
i

|an −N(xi)| >
tn(an + α)2

4

}

≤ P

{∑
i

|an −N(xi)|2 >
tn(an + α)2

8

}
+ 2P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > tn(an + α)

16

}
. (12)

Finally, P
{
C1 >

tn
4

}
is upper bounded by the sum of (9) and (10). We Use this result combined

with the upper bound of P
{
C2 >

tn
4

}
given in (12) to upper bound the term P

{
B2 >

t
4

}
. Then, apply

the new upper bound with (7) and (8) to upper bound (3) and therefore Theorem 1 follows. ut

C Proof of Corollary 1 and Theorem 2

In this Appendix, we show that the LED of the regularized normalized Laplacian for a DGG is a good
approximation for the LED of the regularized normalized Laplacian for an RGG in both the connectivity
and thermodynamic regimes.

To upper bound the terms obtained in Theorem 1, we use the Chebyshev inequality. Notice that∑
i

N(xi)/2 that appears in Theorem 1 counts the number of edges in G(Xn, rn). For convenience,

we denote
∑
i

N(xi)/2 as ξn. In order to apply the Chebyshev inequality, we determine the variance of

the number of edges, i.e.,Var(ξn) in the following lemma.

Lemma 6 (Variance of ξn) When x1, ..., xn are i.i.d. uniformly distributed in the d-dimensional unit
torus Td = [0, 1]

Var (ξn) ≤
(n− 1)

n

[
θ(d) + 2(n− 2)(θ(d))2rdn

]
.

Proof The proof follows along the same lines of Proposition A.1 in [26] when extended to a unit torus
and applied to i.i.d. and uniformly distributed nodes.

Let ϑ =
[
θ(d) + 2(n− 2)(θ(d))2rdn

]
. In the following, we upper bound the probabilities given in

Theorem 1 using Lemma 6 and the Chebyshev inequality. We start by upper bounding the first term as

P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > tn(an + α)2 − 4α2

4
(
1 + 2α

n

) − nan

}

= P

{
|ξn − Eξn| >

tn(an + α)2 − 4α2

8
(
1 + 2α

n

) − nan

}

≤
82
(
1 + 2α

n

)2
Var(ξn)[

tn(an + α)2 − 4α2 − 8(1 + 2α
n
)nan

]2
=

82
(
1 + 2α

n

)2
(n− 1)ϑ

n
[
tn(an + α)2 − 4α2 − 8(1 + 2α

n
)nan

]2 ,
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and

P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > tn(an + α)

16

}
≤

322Var(ξn)

t2n2(an + α)2

=
322(n− 1)ϑ

t2n3(an + α)2
. (13)

Finally, we upper bound the last term as

P

{∑
i

|N(xi)− an|2 >
nt(an + α)2

8

}
≤ P


(∑

i

|N(xi)− an|
)2

>
nt(an + α)2

8


= P

{∑
i

|N(xi)− an| >
(an + α)

√
nt

2
√
2

}
.

Then,

P

{∑
i

|N(xi)− an|2 >
nt(an + α)2

8

}
≤ 2P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > (an + α)
√
nt

2
√
2

}

= 2P

{
|ξn − Eξn| >

(an + α)
√
nt

4
√
2

}

≤
64(n− 1)ϑ

tn2(an + α)2
. (14)

Corollary 1 for the thermodynamic regime is obtained from upper bounding the terms in the r.h.s
of (3) in Theorem 1 obtained in (C), (13) and (14). In addition, by letting α → 0, the provided upper
bounds hold in the connectivity case.

In the following, we propose a tighter upper bound for the Levy distance between FL(Dn) and
FL(Xn) in the connectivity regime. More precisely, the following upper bounds are tighter when the
average vertex degree scales as Ω(log1+ε(n)) or for an = c log(n) when c > 24.

First, observe that the number of nodes that fall in an arbitrary interval of radius rn follows a binomial
distribution. Then in order to derive the distribution of N(xi), we need to derive the distribution of the
nodes that fall in a ball centered in xi. To derive the distribution of N(xi) in the connectivity regime, we
throw at random a node which will be in a random position and we are left with n − 1 nodes. Then, we
take a ball of size 2rn, centered around the thrown node. If we throw randomly the remaining n−1 nodes,
then, N(xi) will be a random variable binomially distributed with parameters (n− 1, θ(d)rn), i.e.,

P(N(xi) = k) =
(n− 1

k

)
(θ(d)rn)

k(1− θ(d)rn)n−k−1, for k = 0, ..., n− 1.

To upper bound the terms in the r.h.s of (3) given in Theorem 1, we introduce upper bounds for a
binomially distributed random variableX appropriate for large deviations. These results play a key role to
establish the relation between FL(Xn) and FL(Dn).

Lemma 7 ([27], Theorem 2.1, page 26) Let X ∼ Bin(n, p), EX = np, then

P {X ≥ EX + t} ≤ exp

(
−

t2

2 (EX + t/3)

)
, t ≥ 0.

Lemma 8 ([27], corollary 2.3, page 27) Let X ∼ Bin(n, p), EX = np and 0 < t ≤ 3/2, then

P {|X − EX| ≥ tEX} ≤ 2 exp

(
−
t2

3
EX
)
.
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We upper bound the first term in the r.h.s of (3) in Theorem 1 by using Lemmas 7 and 8 as follows:

P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > tna2n
4
− nan

}
(a)

≤ P

{∑
i

|N(xi)− an| >
nta2n
4
− nan

}
(b)

≤ nP

{
|N(xi)− an| >

ta2n
4
− an

}
≤ nP

{
N(xi) >

ta2n
4

}
+ nP

{
N(xi) < 2an −

ta2n
4

}

≤ n exp

− (tan − 4)2

16
(
t
6
− 2rn

a2n
+ 4

3an

)
 , for t >

8

an
.

(15)

Step (a) follows from
∣∣∣∣∑
i
zi

∣∣∣∣ ≤∑
i
|zi| and step (b) from

∑
i
|N(xi)− an| ≤ n |N(xi)− an|.

Now, instead of upper bounding the two last probabilities given in Theorem 1, we go back to Appendix
B and upper bound (11) by letting α→ 0.

P

{
C2 >

tn

4

}
≤ P

∑
i

∑
j

χ[xi ∼ xj ]
2

N(xi)2
−
∑
i

∑
j

χ[xi ∼ xj ]
2

a2n
>
tn

4


≤ nP

{
1

N(xi)
−

N(xi)

a2n
>
t

4

}
= nP

{
a2n −N(xi)

2 >
ta2nN(xi)

4

}

P

{
C2 >

tn

4

}
= nP

{[
a2n −N(xi)

2
]
+
ta2n
4

[an −N(xi)] >
ta3n
4

}
≤ nP

{∣∣a2n −N(xi)
2
∣∣ > ta3n

8

}
+ nP

{
|an −N(xi)| >

an

2

}
≤ nP

{
−N(xi)

2 >
ta3n
8
− a2n

}
+ nP

{
|an − rn −N(xi)| >

an − rn
2

}

+ nP

N(xi) > an − rn +

√
ta3n
8

+ a2n − an + rn


= nP

{
−N(xi)

2 >
ta3n
8
− a2n

}
+ nP

{
|N(xi)− EN(xi)| >

an − rn
2

}

+ nP

N(xi) > EN(xi) +

√
ta3n
8

+ a2n − an + rn

 .

Then, applying Lemma 7 and 8 and for t >
8

an
, yields

P

{
C2 >

tn

4

}
≤ 2n exp

(
−
(an − rn)

12

)
+ n exp

−3an
[√

t
8
an + 1− 1 + rn

an

]2
2
[
2− 2rn

an
+
√

t
8
an + 1

]
 .

(16)

Finally, taking the upper bounds found by using the Chebyshev inequality in (C), (13) and (14)
combined with the upper bounds found by using Lemmas 7 and 8, i.e., (15), (16) all together, then by
applying Lemma 3 and letting α→ 0, Theorem 2 follows. ut
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D Proof of Lemma 3

In this appendix we show that for an ≥
2d1+1/p

2d− 1
and any `p-metric, p ∈ [1,∞], the vertex degree a′n

of G(Dn, rn) is lower bounded as
an

2d1+1/p
≤ a′n. (17)

First, we show that (17) holds under the Chebyshev distance. Let an RGG and a DGG be obtained
by connecting two nodes if the Chebyshev distance between them is at most rn > 0. Recall that the
Chebyshev distance corresponds to the metric given by the `∞-norm. Then, the degree of a d-dimensional
DGG with n nodes formed by using the Chebyshev distance is given by [16]

a′n =
(
2bn1/drnc+ 1

)d
− 1

=
(
2ba1/dn c+ 1

)d
− 1,

where bxc is the integer part, i.e., the greatest integer less than or equal to x.
For p =∞, we have

an

2d
≤ a′n ⇐⇒ an ≤ 2da′n ⇐⇒ an ≤ 2d

(
2ba1/dn c+ 1

)d
− 2d

⇐⇒ (an + 2d) ≤ 2d
(
2ba1/dn c+ 1

)d
.

Notice that ba1/dn c ≥ (a
1/d
n − 1), then it is sufficient to show that

(an + 2d) ≤ 2d
(
2(a

1/d
n − 1) + 1

)d
⇐⇒ (an + 2d) ≤ 2d

(
2a

1/d
n − 1

)d
⇐⇒

(
1

2d
+

1

an

)
≤
(
2−

1

a
1/d
n

)d
.

By taking the log in both sides of the last inequality, yields

ln

(
1

2d
+

1

an

)
≤ d ln

(
2−

1

a
1/d
n

)
.

Consequently, under the Chebyshev distance, (17) holds for an ≥ 2d
2d−1

.

Next, we show that (17) holds under any `p-metric, p ∈ [1,∞]. Let bn and b′n be the degrees of an
RGG and a DGG formed by connecting each two nodes when d1/p‖xi−xj‖∞ ≤ rn. This simply means

that the graphs are obtained using the Chebyshev distance with a radius equal to
rn

d1/p
. Then, the degree

of the DGG can be written as
b′n =

(
2
⌊
b
1/d
n

⌋
+ 1
)d
− 1.

When p =∞, we have that (17) holds. Therefore, we deduce that for bn ≥
2d

2d− 1
, we get

bn

2d
≤ b′n.

Note that for any `p-metric with p ∈ [1,∞) in Rd, we have

‖xi − xj‖p ≤ d1/p‖xi − xj‖∞.

Then the number of nodes a′n in the DGG that falls in the ball of radius rn is greater or equal than b′n, i.e.,
b′n ≤ a′n. Therefore,

bn

2d
=

an

2d1+1/p
≤ b′n ≤ a′n.
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Hence, for an ≥ 2d1+1/p

2d−1
, we get

an

2d1+1/p
≤ a′n.

ut

E Proof of Lemma 4

In this appendix, we provide the eigenvalues of the regularized normalized Laplacian matrix for a DGG
using the Chebyshev distance. Then, the degree of a vertex in G(Dn, rn) is given as [16]

a′n = (2kn + 1)d − 1, with kn = bNrnc ,

where bxc is the integer part, i.e., the greatest integer less than or equal to x. The regularized normalized
Laplacian can be written as

L̂(Dn) = I−
1

(a′n + α)
A−

α

n(a′n + α)
11T , (A)

where I is the identity matrix, 1T = [1, ..., 1]T is the vector of all ones and A is the adjacency matrix
defined as

Aij =

{
1, ‖xi − xj‖p ≤ rn, i 6= j, and p ∈ [1,∞],
0, otherwise.

When d = 1, the adjacency matrix A of a DGG in T1 with n nodes is a circulant matrix. A well
known result appearing in [28], states that the eigenvalues of a circulant matrix are given by the discrete
Fourier transform (DFT) of the first row of the matrix. When d > 1, the adjacency matrix of a DGG is
no longer circulant but it is block circulant with Nd−1 × Nd−1 circulant blocks, each of size N × N.
The author in [16], pages 85-87, utilizes the result in [28], and shows that the eigenvalues of the adjacency
matrix in Td are found by taking the d-dimensional DFT of an Nd tensor of rank d obtained from the first
block row of (A)

λm1,...,md =

N−1∑
h1,...,hd=0

ch1,...,hd exp

(
−
2πi

N
m.h

)
, (18)

where m and h are vectors of elementsmi and hi, respectively, withm1, ...,md ∈ {0, 1, ...,N− 1} and
ch1,...,hd defined as [16]

ch1,...,hd =

{
0, for kn < h1, ..., hd ≤ N− kn − 1 or h1, ...hd = 0,
1, otherwise.

(19)

The eigenvalues of the block circulant matrix A follow the spectral decomposition [16], page 86,

A = FHΛF,

where Λ is a diagonal matrix whose entries are the eigenvalues of A, and F is the d-dimensional DFT
matrix. It is well known that when d = 1, the DFT of an n× n matrix is the matrix of the same size with
entries

Fm,k =
1
√
n
exp (−2πimk/n) for m, k = {0, 1, ..., n− 1}.

When d > 1, the block circulant matrix A is diagonalized by the d-dimensional DFT matrix F =
FN1

⊗
...
⊗

FNd , i.e., tensor product, where FNd is the Nd-point DFT matrix.

Notice that all the matrices in (A) have a common eigenvector that is
(

1√
n
, ..., 1√

n

)
and this eigen-

vector coincides with the first row and column of F. Then,
(

1√
n
, ..., 1√

n

)
is also an eigenvector of

L̂(Dn).
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The regularized normalized Laplacian can be expressed as

L̂(Dn) = I−
1

(a′n + α)
FHΛF−

α

n(a′n + α)
11T

= FH
(

I−
1

(a′n + α)
Λ−

α

n(a′n + α)
F11TFH

)
F

= FH
(

I−
1

(a′n + α)
Λ−

nα

n(a′n + α)
eT1 e1

)
F

= FHΛ1F, (20)

where e1 = (1, 0...0) and Λ1 =
(
I− 1

(a′n+α)
Λ− nα

n(a′n+α)
eT1 e1

)
is a diagonal matrix whose diago-

nal elements are the eigenvalues of L̂(Dn). Then, from (20), the derivation of the eignevalues of L̂(Dn)
reduces to the derivation of the eigenvalues of the normalized adjacency matrix A′.

The normalized adjacency matrix A′ is defined as

A′ =
1

(a′n + α)
A.

By using (18) and (19), the eigenvalues of A′ for a DGG in Td are given as

λ′m1,...,md
=

1

(a′n + α)

 N−1∑
h1,...,hd=0

exp

(
−
2πimh

N

)
−

N−kn−1∑
h1,...,hd=kn+1

exp

(
−
2πimh

N

)− 1

(a′n + α)

= −
1

(a′n + α)

N−kn−1∑
h1,...,hd=kn+1

exp

(
−
2πimh

N

)
−

1

(a′n + α)

λ′m1,...,md
= −

1

(a′n + α)

d∏
s=1

(
e
−2imsπ

N
kn − e

2imsπ
N

(1+kn)
)

(
−1 + e

2imsπ
N

) −
1

(a′n + α)

=
1

(a′n + α)

d∏
s=1

(
e

2imsπ
N

(1+kn) − e
−2imsπ

N
kn
)

(
−1 + e

2imsπ
N

) −
1

(a′n + α)

=
1

(a′n + α)

d∏
s=1

sin(msπ
N

(2kn + 1))

sin(msπ
N

)
−

1

(a′n + α)
.

Then, we conclude that the eigenvalues of L̂(Dn) for n finite are given by

λ̂m1,...,md = 1−
1

(a′n + α)

d∏
s=1

sin(msπ
N

(2kn + 1))

sin(msπ
N

)
+

1− αδm1,...,md

(a′n + α)

λ̂m1,...,md = 1−
1

(a′n + α)

d∏
s=1

sin(msπ
N

(a′n + 1)1/d)

sin(msπ
N

)
+

1− αδm1,...,md

(a′n + α)
,

withm1, ...,md ∈ {0, ...N−1} and δm1,...,md = 1 whenm1, ...,md = 0 otherwise δm1,...,md = 0.
In particular, as α→ 0, the eigenvalues of L(Dn) in the connectivity regime are given by

λm1,...,md = 1−
1

a′n

d∏
s=1

sin(msπ
N

(a′n + 1)1/d)

sin(msπ
N

)
+

1

a′n
, (21)

with m1, ...,md ∈ {0, ...,N− 1}.
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In the thermodynamic regime, for s ∈ {0, ..., d} we let fs = ms
N

then as n → ∞, fs ∈ Q ∩ [0, 1]

where Q denotes the set of rational numbers. Therefore, for γ ≥ 1, the eigenvalues of L̂(Xn) can be
approximated by the eigenvalues of L̂(Dn) given as

λ̂f1,...,fd = 1−
1

(γ′ + α)

d∏
s=1

sin(πfs(γ′ + 1)1/d)

sin(πfs)
+

1− αδf1,...,fd
(γ′ + α)

, (22)

where γ′ = (2
⌊
γ1/d

⌋
+1)d− 1 and δf1,...,fd = 1 when f1, ..., fd = 0, otherwise δf1,...,fd = 0. ut

References

1. Z. Bai and J. W. Silverstein, Spectral analysis of large dimensional random matrices. Springer, 2010.
2. Z. D. Bai, “Methodologies in spectral analysis of large dimensional random matrices, a review,” Sta-

tistica Sinica, vol. 9, pp. 611–677, 1999.
3. I. J. Farkas, I. Derényi, A.-L. Barabási, and T. Vicsek, “Spectra of “real-world” graphs: Beyond the

semicircle law,” Physical Review E, vol. 64, no. 2, p. 026704, 2001.
4. P. Van Mieghem, Graph spectra for complex networks. Cambridge University Press, 2010.
5. R. Couillet and M. Debbah, Random matrix methods for wireless communications. Cambridge

University Press, 2011.
6. P. Erdos, “On random graphs,” Publicationes mathematicae, vol. 6, pp. 290–297, 1959.
7. Z. J. Haas, J. Deng, B. Liang, P. Papadimitratos, and S. Sajama, “Wireless ad hoc networks,” Ency-

clopedia of Telecommunications, 2002.
8. J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer networks, vol. 52,

no. 12, pp. 2292–2330, 2008.
9. V. M. Preciado and A. Jadbabaie, “Spectral analysis of virus spreading in random geometric net-

works,” IEEE Conference on Decision and Control, 2009.
10. A. Ganesh, L. Massoulié, and D. Towsley, “The effect of network topology on the spread of epi-

demics,” in Proc. of IEEE Conference on Computer Communications (INFOCOM), 2005.
11. M. Penrose, Random geometric graphs. Oxford University Press, 2003.
12. C. Marshall, J. Cruickshank, and C. O’Riordan, “Social network analysis of clustering in random

geometric graphs.”
13. M. Maier, M. Hein, and U. von Luxburg, “Optimal construction of k-nearest-neighbor graphs for

identifying noisy clusters,” Theoretical Computer Science, vol. 410, no. 19, pp. 1749–1764, 2009.
14. A. M. Sadri, S. Hasan, S. V. Ukkusuri, and J. E. S. Lopez, “Analyzing social interaction networks

from twitter for planned special events,” arXiv preprint arXiv:1704.02489, 2017.
15. L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bringing order to the

web.” Stanford InfoLab, Tech. Rep., 1999.
16. A. Nyberg, “The Laplacian spectra of random geometric graphs,” Ph.D. dissertation, 2014.
17. A. Nyberg, T. Gross, and K. E. Bassler, “Mesoscopic structures and the Laplacian spectra of random

geometric graphs,” Journal of Complex Networks, vol. 3, no. 4, pp. 543–551, 2015.
18. C. P. Dettmann and G. Knight, “Symmetric motifs in random geometric graphs,” Journal of Complex

Networks, vol. 6, no. 1, pp. 95–105, 2017.
19. N. El Karoui, “The spectrum of kernel random matrices,” The Annals of Statistics, vol. 38, no. 1, pp.

1–50, 2010.
20. T. Jiang, “Distributions of eigenvalues of large Euclidean matrices generated from lp balls and

spheres,” Linear Algebra and its Applications, vol. 473, pp. 14–36, 2015.
21. C. Bordenave, “Eigenvalues of Euclidean random matrices,” Random Structures & Algorithms,

vol. 33, no. 4, pp. 515–532, 2008.
22. P. Blackwell, M. Edmondson-Jones, and J. Jordan, Spectra of adjacency matrices of random geometric

graphs. Unpublished, 2007.
23. S. Rai, “The spectrum of a random geometric graph is concentrated,” Journal of Theoretical Proba-

bility, vol. 20, no. 2, pp. 119–132, 2007.
24. K. Avrachenkov, B. Ribeiro, and D. Towsley, “Improving random walk estimation accuracy with

uniform restarts,” in International Workshop on Algorithms and Models for the Web-Graph. Springer,
2010, pp. 98–109.



On the Normalized Laplacian Spectra of Random Geometric Graphs 25

25. J. C. Taylor, An introduction to measure and probability. Springer Science & Business Media, 2012.
26. T. Müller, “Two-point concentration in random geometric graphs,” Combinatorica, vol. 28, no. 5, p.

529, 2008.
27. S. Janson, T. Luczak, and A. Rucinski, Random graphs. John Wiley & Sons, 2011.
28. R. M. Gray, “Toeplitz and circulant matrices: A review,” Foundations and Trends R© in Communica-

tions and Information Theory, vol. 2, no. 3, pp. 155–239, 2006.


