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What is a Network?

I Collection of connected objects

I Mathematically, objects are referred to as nodes or vertices and the
connections are referred to as edges
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Examples of Networks

Graphical representation of part of the Internet

I Other networks: social networks, networks of publications,
transportation networks, metabolic networks and communication networks
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Complex Networks and Random Graphs

I Complex networks are often inherently difficult to understand due to
their large sizes

I Model networks with graphs

I Tools from graph theory helps to understand different complex network
properties

I Graphical representation, e.g.,

• Erdös-renyi random graph: low average path, small degree of
transitivity

• Small-world graph: combine transitivity condition and the low
average path

• Scale-free graph: Pdeg(k) ∝ k−α, α > 0

• Random geometric graph (RGG)
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RGG Application

I Wireless ad-hoc network:

• Mobile devices: independently and uniformly
distributed at random in a finite region

• Message transmission: depends on the
locations of the mobile nodes

The distance between nodes is of fundamental importance

I Random graph model of ad-hoc network:

• Vertices: mobile devices

• Edges: if two nodes are within the same
transmission range r

I Ad-hoc network connectivity
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Objectives

I Understand the behavior of RGG as n grows large

I Provide insights that give macroscopic properties of RGGs

One approach: via Spectral Graph Theory

I Spectral graph analysis is the study of eigenvalues and eigenvectors of graphs

Objective: New tools to improve the existing results on the spectum of RGGs

• Associate a matrix with a RGG

• Matrix eigenvalues ⇔ Graph properties
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RGG Matrix Representation

I Adjacency matrix AXn ∈ Rn×n

AXn
ij =

{
1, if xi ∼ xj and xi 6= xj ,
0, otherwise.

I Transition matrix PXn

• Random walk on a graph: stochastic process
which randomly jumps from vertex to another
vertex

PXn = D−1A

• di: degree of a vertex xi

di =
∑
j

AXn
ij .

• D ∈ Rn×n: diagonal matrix of vertex degrees
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RGG Matrix Representation

• Spectrum of PXn detect community structures of the network

• PXn is not symmetric

I Symmetric normalized Laplacian matrix LXn ∈ Rn×n

LXn = In −D−1/2AXnD−1/2

• In ∈ Rn×n: identity matrix

• If λ is an eigenvalue of PXn then 1− λ is an eigenvalue of LXn
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Graph Geometric Properties

I Other geometric properties are controlled by the eigenvalues and
eigen-vectors of these matrices, e.g.,

• Random walks on graphs: probability of hitting times is governed by the
spectrum of the normalized Laplacian matrix

• Network epidemics: time evolution of the infected population is governed
by the spectral radius of the adjacency matrix
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Main Contributions

Contributions

I Contribution 1: analysis of the spectrum of the normalized Laplacian
matrixa b

I Contribution 2: analysis of the spectrum of the adjacency matrixc

I Contribution 3: determine the spectral dimension of RGGs, a generalized
dimension for irregular structuresd

aM. Hamidouche, L. Cottatellucci, and K. Avrachenkov, “On the Normalized Laplacian
Spectra of Random Geometric Graphs” Submitted to Journal of theoretical probability

bM. Hamidouche, L. Cottatellucci, and K. Avrachenkov, “Spectral Bounds of the Regularized
Normalized Laplacian for Random Geometric Graphs.” 4th Graph Signal Processing Workshop,
2019

cM. Hamidouche, L. Cottatellucci, and K. Avrachenkov, “Spectral Analysis of the Adjacency
Matrix of Random Geometric Graphs.” 57th Annual Allerton Conference on Communication,
Control, and Computing, 2019

dK. Avrachenkov, L. Cottatellucci and M. Hamidouche, “Eigenvalues and Spectral Dimension
of Random Geometric Graphs” 8th International Conference on Complex Networks and their
Applications, 2019
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Random Geometric Graph

I Our focus: random geometric graphs (RGGs) G(Xn, rn)

1

1

rn

• Nodes: n nodes, x1..., xn ∈ Xn, uniformly
and independently distributed on a torus
Td = [0, 1]d

• Edges: < xi, xj > exists if ‖xi − xj‖p ≤ rn
and p ∈ [1,∞]

• rn: function of n such that rn → 0 when
n→∞

• `p-metric:

‖xi − xj‖p =


(∑d

k=1 |x
(k)
i − x(k)j |

p
)1/p

p ∈ [1,∞),

max{|x(k)i − x(k)j |, k ∈ [1, d]} p =∞.
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RGG Regimes

I Average vertex degree of the RGG: when nodes are interdependently and uniformly

distributed on a unit Torus

an ∝ nrdn

I RGG regimes:

• Connectivity regime: an = Ω(log(n))

• Dense regime: an = Θ(n)

• Thermodynamic regime: an tends to a constant γ, i.e., an → γ as n→∞

I Example: RGG in a unit Torus with n = 50 and rn =0.1, 0.2, 0.3, respectively
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Deterministic Geometric Graph (DGG) with Nodes in a Grid G(Dn, rn)

Nodes: n nodes, x′1, ..., x
′
n ∈ Dn at the

intersection of hyper-planes equally spaced

Edges: < x′i, x
′
j > exists if ‖x′i − x′j‖p ≤ rn and

p ∈ [1,∞]

Degree: all nodes have the same degree a′n

Associated Matrices:

• ADn : adjacency matrix of G(Dn, rn)

• LDn : normalized Laplacian matrix of G(Dn, rn)
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Motivation

I DGG and RGG transition matrices are equivalent in a specific range of
the connectivity regime (Rai, 2007)

I Contribution:

• Extend Rai work to the full range of the connectivity regime

• Analyze the spectrum in the thermodynamic regime

• Provide explicit expression for the eigenvalues of the normalized
Laplacian matrix in the connectivity and thermodynamic regime
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Hilbert-Schmidt Norm of the Difference Between LXn and LDn

I Provide an upper bound on Hilbert-Schmidt norm of the difference between
LXn and LDn

‖LXn − LDn‖HS =

[
1

n
Trace(LXn − LDn )2

]1/2

Theorem 1: Concentration of the Hilbert-Schmidt norm

• In the connectivity regime, as n→∞ and t > 0

P
(
‖LXn − LDn‖2HS > t

)
→ 0

• In the thermodynamic regime, LDn approximate LXn as n→∞, upper bound

the approximation error by
8

γ

I Remark: In the thermodynamic regime, the error bound decreases for large γ
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Eigenvalues of the DGG Normalized Laplacian

I When d = 1, the adjacency matrix of a DGG is circulant and the eigenvalues
are given by the discrete Fourier transform (DFT)

I When d > 1, the adjacency matrix of a DGG is block circulant with
Nd−1 ×Nd−1 circulant blocks, each of size N ×N

I Eigenvalues of the adjacency matrix in torus are found by taking the
d-dimensional DFT of an Nd tensor of rank d obtained from the first block row
of the matrix

Theorem 2: Eigenvalues of LDn
For d ≥ 1, `∞−norm, the eigenvalues of LDn are

λm1,...,md = 1−
1

an

d∏
s=1

sin(msπ
N

(an + 1)1/d)

sin(msπ
N

)
+

1

an

• m1, ...,md ∈ {0, ...N− 1}

• When an = Ω(log(n)), n→∞, then all eigenvalues converge to 1
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Numerical Results for the Connectivity Regime

I Curves corresponding to the RGG and the DGG match very well when n is
large

I In the connectivity regime, as n→∞, the LSD of L(Dn) converges to the
Dirac measure at one
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Numerical Results for the Thermodynamic Regime

• Empirical spectral distribution
of an RGG and DGG with d = 1,
n = 30000 vertices

• The gap that appears between
the eigenvalue distributions of
the RGG and the DGG is within
the theoretical upper bound
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1 Motivation

2 On the Normalized Laplacian Spectra of Random Geometric Graphs

3 Spectral Dimension (SD) of RGG

4 Summary and Perspectives
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Network Dimensionality

I Dimension: minimum number of coordinates needed to specify any
point within the space

I Develop appropriate representation for complex data, e.g.,

• Image recognition: estimate the number of variables needed in a
minimal for a relevant representation of an image

• Signal processing: estimate how many variables are needed to
generate a good approximation of the signal
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Network Dimensionality

• Representation of complex networks by random
graphs

• Minimum d for which the entire network can be
embedded in a d−dimensional space

Problem: Find an efficient method to estimate the dimension of networks modeled
by random geometric graph
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Spectral Dimension

Approach: Estimation of spectral dimension (SD)

I Spectral dimension: generalization of the Euclidean dimension of regular
lattices to irregular structures such as graphs

Important quantities:

I Random walk for graph: sequence of edges, not necessary different

I Return probability P0(t): probability that a walker returns to its starting
point after t steps

I Spectral dimension: defined in terms of P0(t)

ds = −2
d lnP0(t)

d ln(t)

• When P0(t) = t−α then α = ds
2
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Random Walk on Regular Lattice

• Two-dimensional case:
person walking randomly
around a regular city

• On regular lattices, P0(t) is controlled by the lattice (Euclidean) dimension d
asymptotically

P0(t) ∼ t−d/2 for t→∞
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Random Walk on RGG

Question: Investigate whether the power law behavior of the return proba-
bility holds on general random geometric graphs

I P0(t) is directly linked to the spectral density function ρ(λ) of the
normalized Laplacian as

P0(t) =

∫ ∞
0

e−λtρ(λ)dλ

I Long time limit of P0(t) is linked to the behavior of ρ(λ) for λ→ 0
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Power-law tail Asymptotics

I ρ(λ) follows a power-law tail asymptotics when λ→ 0

ρ(λ) ∼ λγ , γ > 0

I ds can be described according to the asymptotic behavior of the
normalized Laplacian empirical spectral distribution Fn(x)

ds
2

= lim
x→0

log(Fn(x))

log(x)
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Eigenvalues Visualization in the Thermodynamic Regime

Analyze the behavior of the limiting spectral distribution (LSD) of the DGG
regularized normalized Laplacian in a neighborhood of zero

• Eigenvalues of the DGG for
γ = 8 (blue line) and γ = 28
(red line), d = 1

• DGG eigenvalues show a
symmetry and the smallest
ones are reached for small
values of w
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Spectral Dimension of RGG in the Thermodynamic Regime

• Approximation of the small eigenvalues by using
Taylor series expansion of degree 2 around zero

λ(w) ≈
π2

6(γ + α)
w2/d(γ′ + 1)

d+2
d

Result

I The LSD of the DGG regularized normalized Laplacian in a neighborhood of
zero follows a power-law asymptotics

F (x) ≈
6d/2(1 + γ′ + 1)−

2+d
2

πd
xd/2

I ds ∼ d
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Recurrent and Transient RWs

I Random walk (RW) is recurrent if it visits its starting position infinitely
often with probability one

I Random walk is transient if it visits its starting position finitely often
with probability one

I If spectral dimension exists, then

• RW is recurrent if ds ≤ 2

• RW is transient if ds > 2
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Summary

I Analysis of the spectrum of the normalized Laplacian of RGG in different
regimes

I Bound the probability that the Hilbert-Schmidt norm of the difference between
the DGG and RGG normalized Laplacian matrices is greater than a certain
threshold

I In connectivity regime, the normalized Laplacian matrices of the RGG and the
DGG are asymptotically equivalent with high probability

I In thermodynamic regime, the spectrum of the DGG regularized normalized
Laplacian approximates the one of the RGG, and upper bound for the
approximation error is provided

I In connectivity regime, when n→∞, the LSD of the normalized Laplacian
matrix of RGG converges with high probability to the Dirac distribution at one

I Approximation of the SD of RGGs in the thermodynamic regime by the
Euclidean dimension d
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Perspectives

I Investigate if we can approximate our matrix by matrix that is free and
use free probability theory to provide more accurate spectrum in the
thermodynamic regime

I Investigate RGG with real world properties by sampling nodes uniformly
in the hyperbolic space

I Investigate a random graph for community detection called the
geometric block model in both connectivity and thermodynamic regime
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